Let $ \tau $ be the substitution $ 1\to 101 $ and $ 0\to 1 $ on the alphabet $ \{0, 1\} $. The fixed point of $ \tau $ obtained starting from 1, denoted by $ {\bf{s}} $, is a Sturmian sequence. We first give a characterization of $ {\bf{s}} $ using $ f $-representation. Then we show that the distribution of zeros in the determinants induces a partition of integer lattices in the first quadrant. Combining those properties, we give the explicit values of the Hankel determinants $ H_{m, n} $ of $ {\bf{s}} $ for all $ m\ge 0 $ and $ n\ge 1 $.
Citation: Haocong Song, Wen Wu. Hankel determinants of a Sturmian sequence[J]. AIMS Mathematics, 2022, 7(3): 4233-4265. doi: 10.3934/math.2022235
Let $ \tau $ be the substitution $ 1\to 101 $ and $ 0\to 1 $ on the alphabet $ \{0, 1\} $. The fixed point of $ \tau $ obtained starting from 1, denoted by $ {\bf{s}} $, is a Sturmian sequence. We first give a characterization of $ {\bf{s}} $ using $ f $-representation. Then we show that the distribution of zeros in the determinants induces a partition of integer lattices in the first quadrant. Combining those properties, we give the explicit values of the Hankel determinants $ H_{m, n} $ of $ {\bf{s}} $ for all $ m\ge 0 $ and $ n\ge 1 $.
[1] | J. P. Allouche, J. Peyrière, Z. X. Wen, Z. Y. Wen, Hankel determinants of the Thue-Morse sequence, Ann. Inst. Fourier, Grenoble, 48 (1998), 1–27. |
[2] | J. P. Allouche, J. Shallit, Automatic sequences: Theory and Applications, Cambridge University Press, 2003. |
[3] | Y. Bugeaud, On the rational approximation to the Thue-Morse-Mahler numbers, Ann. Inst. Fourier, 61 (2011), 2065–2076. https://doi.org/10.5802/aif.2666 doi: 10.5802/aif.2666 |
[4] | Y. Bugeaud, G. N. Han, Z. Y. Wen, J. Y. Yao, Hankel Determinants, Padé Approximations, and Irrationality Exponents, Int. Math. Res. Notices (IMRN), 5 (2016), 1467–1496. |
[5] | M. Coons, On the rational approximation of the sum of the reciprocals of the Fermat numbers, Ramanujan J., 30 (2013), 39–65. https://doi.org/10.1007/s11139-012-9410-x doi: 10.1007/s11139-012-9410-x |
[6] | H. Fu, G. N. Han, Computer assisted proof for Apwenian sequences, Proc. ISSAC 2016 Conference, Waterloo, Ontario, Canada, 2016. |
[7] | R. J. Fokkink, C. Kraaikamp, J. Shallit. Hankel matrices for the period-doubling sequence. Indagationes Mathematicae, 28(1) (2017), 108-119. https://doi.org/10.1016/j.indag.2016.11.008 doi: 10.1016/j.indag.2016.11.008 |
[8] | Y. J. Guo, G. N. Han, W. Wu. Criterions for apwenian sequences, Adv. Math., 389 (2021), 107899. https://doi.org/10.1016/j.aim.2021.107899 doi: 10.1016/j.aim.2021.107899 |
[9] | Y. J. Guo, Z. X. Wen, W. Wu, On the irrationality exponent of the regular paperfolding numbers, Linear Algebra Appl, , 446 (2014), 237–264. https://doi.org/10.1016/j.laa.2013.12.023 doi: 10.1016/j.laa.2013.12.023 |
[10] | G. N. Han, Hankel continued fraction and its applications, Adv. Math., 303 (2016), 295–321. |
[11] | T. Kamae, J. Tamura, Z. Y. Wen, Hankel determinants for the Fibonacci word and Padé approximation, Acta Arithmetica, 89 (1999), 123–161. https://doi.org/10.4064/aa-89-2-123-161 doi: 10.4064/aa-89-2-123-161 |
[12] | N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, (2009). Available from: https://oeis.org/. |
[13] | J. Tamura, Padé approximation for the infinite words generated by certain substitutions and Hankel determinants, Number Theory and Its Applications, Kluwer Academic Publishers. (1990), 309–346. |
[14] | B. Tan, Z. Y. Wen, Invertible substitutions and Sturmian sequences, European J. Combin., 24 (2003), 983–1002. https://doi.org/10.1016/S0195-6698(03)00105-7 doi: 10.1016/S0195-6698(03)00105-7 |
[15] | K. Väänänen, On rational approximations of certain Mahler functions with a connection to the Thue-Morse sequence, Int. J. Number Theory, 11 (2015), 487–493. https://doi.org/10.1142/S1793042115500244 doi: 10.1142/S1793042115500244 |