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Abstract: Let 7 be the substitution 1 — 101 and 0 — 1 on the alphabet {0, 1}. The fixed point
of T obtained starting from 1, denoted by s, is a Sturmian sequence. We first give a characterization
of s using f-representation. Then we show that the distribution of zeros in the determinants induces
a partition of integer lattices in the first quadrant. Combining those properties, we give the explicit
values of the Hankel determinants H,,, of s forallm > 0and n > 1.
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1. Introduction

Lets = (s;) ;>0 be an integer sequence. For all m > 0, n > 1, the (m, n)-order Hankel matrix of s is

Sm Sm+1 Sm+n—1
Sm+1 Sm+2 Sm+n
M, = (Spsis osi, jen—1 =
Sm+n-1  Sm+n " Sm+2n-2-

The (m, n)-order Hankel determinant of s is H,,, = det M,,, .

Hankel determinants of automatic sequences have been widely studied, due to its application to the
study of irrationality exponent of real numbers; see for example [1, 3, 5, 6, 7, 9, 15] and references
therein. In 2016, Han [10] introduced the Hankel continued fraction which is a powerful tool for
evaluating Hankel determinants. By using the Hankel continued fractions, Bugeaud, Han Wen and
Yao [4] characterized the irrationality exponents of values of certain degree two Mahler functions at
rational points. Recently, Guo, Han and Wu [8] fully characterized apwenian sequences, that is +1
sequences whose Hankel determinants Hy, satisfying Hy,/ 21 =1 (mod 2) foralln > 1.

However, the Hankel determinants of other low complexity sequences, such as Sturmian sequences,
are rarely known. Kamae, Tamura and Wen [11] explicitly evaluated the Hankel determinants of the
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Fibonacci word. Tamura [13] extended this result to infinite words generated by the substitutions
a — d*b,b — a (k > 1). In this paper, we study the Hankel determinants of the sequence generated by
the substitution

7:1—>101,0— 1.

Denote by s = (s,),s0 = lim,_,, 7"(1) the fixed point of 7. Since 7"*!(1) = 7"(v(1)) = 7" (1)7"(0)7"(1),
the word 7"(1) is a prefix of s. The first values of s can be obtained by finding 7"(1). For example,

5081+ 8¢ = 72(1) = 7(101) = 1011101

and
S0S81 - S17 = 7'3(1) = T(Tz(l)) =10111011011011101.

It follows from [14, Proposition 2.1] that s is a Sturmian sequence. See also the sequence A104521 in
[12].

We give the explicit values of Hankel determinants H,,, for the sequence s forallm > Oand n > 1.
In Figure 1, we use the color at the point (m, n) to indicate the value of H,,,. For example, if H,,, #
H,, s, then points (m,n) and (m’, n") will be marked by different colors. In particular, if H,,,, = 0, then
the point (m, n) is marked by white. Then we can see the distribution of first values of H,,, from Figure
1 and the collection of all the points (m,n) with H,,,, = O are the union of disjoint parallelograms.
These parallelograms (together with their boundaries) are divided into parallelograms of three types,
labelled by Uy, Vi; and Ty; where k > 0 and i > 1 (for detailed definitions, see Section 3).

Forallk > Oandi > 1, Theorem 1.1 (resp. Theorem 1.2, Theorem 1.3) gives the exact value of H,,,
for all (m,n) € Uy, (resp. Vi, Tk,;); see Figure 2. Since for k > 0 and i > 1, the parallelograms Uy,
Vi and Ty ; are disjoint and they tile the lattices in the first quadrant; see Proposition 3.1 in Section 3.
Combing this nice property and Theorem 1.1, 1.2 and 1.3, we obtain the values of H,,,, for all m > 0
andn > 1.
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Figure 1. Visualization of the Hankel determinants H,, (0 < n,m < 350).
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Theorem 1.1 (1) determine H,, ,

for (m,n) marked by red dots. Theorem 13 (1)
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Theorem 1.1 (2) determines H,,, Theorem 1.3 (2)

for (m,n) marked in blue dots.

Theorem 1.2 (3)
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m

Figure 2. Theorem 1.1 (1) and (2) give the values of H,,, for (m,n) on the upper edge
(marked by red dots) and the lower edge (marked by blue dots) of the parallelogram Uy,
respectively. Theorem 1.1 (3) give the values of H,,, for (m,n) marked by black and white
circles in the parallelogram Uy ;. Theorem 1.2 and 1.3 are illustrated in the same way.

To state our results, we need four (technically defined) integer sequences (f,,).>0, (@)is1, (Bi)is1
and (y;);>1; see Section 3 for their definitions. These four sequences are used to locate the corners of

parallelograms Uy ;, Vi; and T} ;. Our main results are the following.

Theorem 1.1. Let k > 0 and Uy = U;5Uy;. For all (m,n) € Uy,

Fok+s

1. whenn = fys = 1, Hypp = (=1 (=1) 55 -Oeamem) _ foar
Soks2-1

2. whenn = fo, Hy, = (=1F*1(=1)75 - s
3. when for <n < fozs— 1, if m+n=qa;,— [+ 1ora;for somei> 1, then

(k431 ’")2(f2k+3 —2-n f 2k+1

Hm,n — _(_1)(f2k+3—n)k(_1) R

otherwise H,,, = 0.

Theorem 1.2. Let k > 0 and Vi = U5 Vy;. For all (m,n) € V,

Dk2*hke173
1. whenn = fyp— 1, Hy, = (=1)" 2 S
Sok+2-1

2. when n = fo, Hyp = (1) (=1)™5 . L1
3. when for <n < foso— 1, ifm+n=0;+10rB; + foxs1 for somei > 1, then

) (k1 Vot~ 1=maisn =20 foppy
Hm,n — _(_1)(fzk 2—n)(k+ )(_1) 2 . 5

otherwise H,,,, = 0.
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Theorem 1.3. Letk > 0 and Ty = U;Ty,;. For all (m,n) € Ty,

-1

1. whenn = fop — 1, Hy, = (—1)Tf- Foes
2. whenn = fogqr, Hyp = (=1)P0m=252-1 ¢

3. when for <n < oo — L, ifm+n=7y;— for +1ory, for somei>1, then

Goker2=1=m(fog42=2-1) -1
2

H,,, = (=1)2715 (1) (=D - fas

otherwise H,,, = 0.

Sketch of proofs of main results

The computational result indicates that the collection of points (m, n) such that the Hankel deter-
minant H,, = 0 is covered by disjoint parallelograms of three different types, denoted by U, ., V...
and T..; see Figure 1. This inspires us to calculate the Hankel determinant H,,, in each parallelo-
gram (according to the location of (m, n)). Then connect the values of Hankel determinants in different
parallelograms.

Step 1 Locate the parallelograms.
We first find that the second coordinates of the corners of those parallelograms can be expressed
in terms of an integer sequence (f,).>o (see Figure 2 for example). Then we see that the first
coordinates of corners of three types of parallelograms are determined by three integer sequences
(@)i>1, (Bi)i>1 and (y;);>1 introduced in Section 3. Then we characterize the parallelograms (ob-
served in Figure 1) by (3.1). Proposition 3.1 showed that parallelograms defined by (3.1) tile the
first quadrant.

Step 2 Calculate H,,, for (m, n) inside the parallelograms Uy .., Vi and T...
Lemma 4.1 show that H,,,, = 0 for all (m,n) which are not on the boundary of those parallelo-
grams. Now the white part in Figure 1 is clear.

Step 3 Reduction on the boundary of Uy ., Vi, and T,

e By Lemma 4.2 and Lemma 4.6 (resp. Lemma 4.8, Lemma 4.10), calculating H,,,, for all
(m, n) on the boundary of Uy, (resp. Vi., Ti.) is reduced to calculate the determinant H,,,
for only one point (m, n) on its boundary. See Figure 3.

e Lemma 4.3 connects the values of H,,,, for (m, n) on the lower edge of U, . and V.. Lemma
4.4 builds similar connections for the values of H,,, for (m,n) on the lower edge of T} ; and
Ty.iv1- See Figure 4.

Therefore, to obtain the values of H,,, for all (m,n) on the boundary of all Uy . and V., we only
need to calculate H,,, for one point (m, n) on the boundary of Uy ;.

Step 4 Reduction on k. Lemma 5.1 enable us to calculate H,,, for (m, n) on the boundary of Uy, . by
using the values of H,,, on the boundary of U, . and T} .. Lemma 5.2 enable us to calculate H,,,
for (m, n) on the boundary of 7} . by using the values of H,,, on the boundary of Uy . and Uj_ ..
See Figure 4.
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Step S According to step 3 and step 4, to obtain the value of H,,, for all (m,n), we only need to
calculate H,,,, for (m, n) on the boundary of Uy, Vi and Ty, for all k. These have been done by
Theorem 5.3, Corollary 5.4 and Corollary 5.5.

Lemma 4.6 (iii) (resp. Lemma 4.8 (iii) and 4.10 (iii))
works for Uy, (resp. Vi. and Tj.)

Lemma 4.6 (ii) (resp. Lemma 4.8
4.6 4.8 ° (i1) and 4.10 (ii)) works for Uj.

4.10 ° (resp. Vi. and Ty,)

Lemma 4.2

Figure 3. Illustration for Lemma 4.2, 4.6, 4.8 and 4.10.

[ ] [ ] . .
o e Lemmgda | T
Uk« /—\ Uy
. . . . . . . . . ° . . . . .
.k Lemma 5.2 View
° 'Y . . o o o . . . .
Uk—L* Uk—l,*

° . v . Y . . ° . °
\/ Lemma 4.3 \/
Figure 4. Illustration for Lemma 4.3, 4.4, 5.1 and 5.2.

The paper is organized as follows. In Section 2, we introduce the f-representation of positive
integers and give a criterion (Proposition 2.4) to determine s, according the f-representation of n. This
criterion leads us to the key ingredient (Theorem 2.5) in calculating the Hankel determinants. Then we
introduce the truncated f-representation which is essential in describing the parallelograms. In Section
3, we show that the parallelograms Uy;, Vi, and T}, tile all the integer points in the first quadrant.
In Section 4, we first show that the Hankel determinants vanish when (m, n) is inside a parallelogram
of those three types. Next we show the relations of Hankel determinants H,,, on the boundary of a
parallelogram Uy ; (or Vi, Ty;) for a given k and i. Finally, for any k > 0, we describe the relation
of values of Hankel determinants for parallelograms Uy; for all i > 1. In Section 5, we give the
expressions for Hankel determinants on the boundary of U; (or Vi, Ty;) for all k > 0. In the last
section, we formulate and prove our main results.
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2. Some properties of the sequence s

In this section, we first introduce the f-representation of positive integers according to the sequence
(fu)n=0- By understanding the occurrences of Os in the sequence s, we prove a key result (Proposi-
tion 2.4) which can determine s, according to the f-representation of n. Then we give the essential
result (Theorem 2.5). In subsection 2.3, we introduce the truncated f-representation which is useful
in determining the parallelograms. In section 2.4, we investigate to some sub-sequences of (f,).s0
which are need in evaluating the coefficients of the Hankel determinants. Then we characterize two
sub-sequences of s which helps us understand H,,,,.

2.1. The occurrence of 0’s in s.

We introduce an auxiliary sequence (f,),>o to determine the positions of 0’s. For all n > 0, we
define

for = I7"(D)] and  fouq = [7(10)].
Then fy =1, fi =2, and forall n > 0,

2.1)

Jons2 = fon + fons1,
Jonsz = fon + fonso-

The first values are
(fnso = (1, 2, 3,4,7, 10, 17, 24, 41, 58, 99, 140, 239, 338, 577, 816, ...).

Remark 2.1. The sequence (f,),>o can be expressed in terms of Pell numbers (p,),>o defined by the
recurrence po = 1, p;y = 2 and p,» = 2p,e1 + p, for all n > 0. See the sequence A000129 in [12].
Indeed, p, (resp. p,-1) is the number of 1’s (resp. 0’s) in 7"(1). It is easy to verify that f,, = p,+1 — pn
and fy,41 = 2p,.

Since (f;,).>0 1S an increasing non-negative integer sequence, it is a numeration system in the fol-
lowing sense.

Lemma 2.2 (Theorem 3.1.1 [2]). Let uy < uy < up < ... be an increasing sequence of integers with
uy = 1. Every non-negative integer N has exactly one representation of the form )., a;u; where
a, # 0, and for i > 0, the digits a; are non-negative integers satisfying the inequality

Aol + AUy + -+ -+ a;u; < Ujyq.

Proposition 2.3. Every integer n > 0 can be uniquely expressed as n = Y., a;f; with a; € {0, 1},
a, # 0, and

(2.2)

aiai,; =0forall0<i<r,
a;a;y, =0 for all even numbers 0 < i <r—1.

Proof. Suppose a; € {0, 1}. By Lemma 2.2, we only need to show that ayfo +a; fi +- - +a.f; < fi+1 for
all ¢ if and only if the condition (2.2) holds.

AIMS Mathematics Volume 7, Issue 3, 4233-4265.
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The ‘only if” part. Suppose there is an index 7 such that a;a;,; = 1. Then

aofot+arfi+ -+ aifi +ai fis1 = fi + fir1 2 fiso,

which is a contradiction for t = i + 1. Suppose there is an even index i such that a;a;., = 1. Then

apfo +aifi + -+ aifi + a1 finr + @i fivo 2 fi + fir = fiss,

which is a contradiction for = i + 2.

The ‘if’ part. Suppose the condition (2.2) holds. When ¢ is odd, the maximum possible value of
aofo+a fi +---+a,f; occurs when a,a;, | ...ay = 1010... 10, and this maximum value f; + f5+ - +
fi—2 + fi = fix1 — 1. When ¢ is even, the maximum possible value of ayfy + a1 fi + --- + a.f; occurs
when a,a,_; ...ay = 1001010... 10. In this case, the maximum value is fi + f5+-- -+ fi_s + fi3 + f; =

ft+l_1- O

Definition (f-representation). Let n > 0 be an integer. We call the representation n = (.., a;f; in
Proposition 2.3 the f-representation of n. We also write n = Y, a;f; where a; = 0 for all i > r. In the
case that we need to emphasize that a¢; depends on n, we write a; = a;(n) as a function of n.

Proposition 2.4. For any integer n > 0 with the f-representation },;_, a;(n)f;, we have s, = 0 if and
only if ap(n) = 1.

Proof. One can verify directly that the result holds for all n < f; = 7. Assume that the result holds for
n < fy where k > 2. We only need to prove it for all fox < n < foryr.
Suppose fox < n < fusi. One has ay(n) = 1 and hence ag(n — fo) = ap(n). Note that fo = [75(1)]
and
8081 -+ - Spypo1 = (1) = TH()THO)H(D). (2.3)

We see that s, is the (n + 1)-th letter of 78*1(1) and it is also the (n + 1 — fo;)-th letter of 75(0) = 7%~!(1).
Consequently, s, = s,_p,. Since

n = for < foks1 = for = fok-2s

by the inductive assumption, we have s,_5, = 0 if and only if ag(n — fx) = 1. Therefore, s, = 0 if and
only if ag(n) = 1.

Suppose for1 < 1 < fouso. In this case ax.1(n) = 1 and ag(n — foxs1) = ao(n). Since [t*(10)] = fors1,
it follows from (2.3) that s, = s,_p,,,. Note that

n = fors1 < foks2 = fors1 = foke

By the inductive assumption, s,_g,,, = 0if and only if ag(n — for+1) = 1 which implies the result also
holds for all f2k+1 <n< f2k+2- O

AIMS Mathematics Volume 7, Issue 3, 4233-4265.
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2.2. Comparing digits in the sequence s with a fixed gap

We introduce the truncated f-representations (of positive integers) which are useful in telling two
digits with a fixed gap in s are equal or not.

Definition. (Truncated f-representation) Let n > 0 be an integer with the f-representation Y, 5 a,(n) ;.
For all integers k > 0, the truncated f-representation of n is

2k+2

Oy(n) := Z a;(n) fi.

i=0

The next lemma gives a criterion that when two digits (with a fixed gap) in s are equal by using their
positions.

Theorem 2.5. Let n > 0 be an integer with the f-representation Y, a;,(n)fi. Then

(i) for all k > 0, 5,., # s, if and only if Dy(n) € {21, Ll — 1)

(ii) for all k > 1, Spip,,, # S, if and only if Oy(n) € {fz%, % -1, % + o % + fa— 1}

Proof. (i) We prove by induction on k. When k& = 0, by Proposition 2.3, there are only four possible
values for ay(n)a;(n)a,(n). By Eq (2.1), we have

Dy(n) 0 1 2 3
ap(n)a;(n)a(n) | 000 | 100 | 010 | 001 .
ao(n + fo) 1 0 0 0

Then we see that ayg(n) # ag(n + f) if and only if ®y(n) = 0 or 1. The result holds for k = 0.
When k = 1, note that ®(n) < Z?:()f,- < fs = 10. We see

D,(n) 0 1 2 3 4 5 6 7 8 9
ap(n)...as(n) | 00000 | 10000 | 01000 | 00100 | 00010 | 10010 | 01010 | 00001 | 10001 | 01001 .
ap(n + f2) 0 0 1 0 0 1 0 0 1 0

Then we have ay(n) # ag(n + f,) if and only if @;(n) = 1 or 2, that is % —1lor % The result also holds
for k = 1.
Now assume that the result holds for all 0 < k < ¢ with £ > 2. We prove it for k = {. Let

w = ay2(M)ax-1(n)...axnn) and v = axy 2(n + for)ay1(n + fa) ... ax1(n + for). According to
Proposition 2.3, w can take only 10 different values.

While w # 01000, one can determine v directly using Eq (2.1); thus in these cases, a;(n+ f>r) = a;(n)
forall 0 <i < 2¢ - 3; see Table 1. For instance, when w = 10010,

2¢-3

n+ f = [Z ai(n)fi + foe-a + forer + Z ai(n)fi) + far

i=0 i=20+3

2°-3 +00
= [Z ai(n)f; + fzz—z) + (f2[+2 + Z ai(n)fi] .

i=0 i=20+3
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Table 1. Values of v.

w | 00000 | 10000 | 01000 | 00100 | 00010 | 10010 | 01010 | 00001 | 10001 | 01001
v | 0010 | 0001 |? 0101 | 0000 | 1000 | 0100 | 0000 | 1000 | 0100

Hence one can see that ag(n + f5) = aog(n).
When w = 01000, set n’ = 3.2, a;(n) f;. Then ag(n) = ag(n’) and

+00

n+ for=|n"+ fri + Z ai(n)fi] + far

i=20+3

= (' + fua)+ fa + ) a(mfi. (byEq.2.1)

i=20+3

Noticing that n’ + f5;_4 < for—2, we have a;(n + f57) = a;(n’ + for—4) for all 0 < i < 2¢ — 2. In particular,
ao(n + for) = ap(n” + fr,-4). By Proposition 2.4 and the inductive assumption,

ag(n + for) # ap(n) <= ap(n’ + frr_s) # ap(n’)

= n’e{@,%—l}

2 2
= Oin)=n"+ fo_1 € {% + for-1, % + fae-1 — 1}~
By Eq (2.1), we have
f2;+1 = (far2 + f20)/2
= (farm2 + for—a + fre-1)/2
= for + —fzé_l
= fora + fro-a + %
= i + s (2.4)

2

Then we obtain that

f2€+1 f2€+1 _ 1}

ap(n + for) # ap(n) & Dy(n) € { R

It follows from Proposition 2.4 that the result holds for k = ¢£.

(i) For any k& > 1, let u = axn(n)ay.i(n)ay.(n). It follows from Proposition 2.4 that u €
{100,010, 001}. The proof is divided into the following three cases.

AIMS Mathematics Volume 7, Issue 3, 4233-4265.
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e When u = 001, we also have ar,3(n) = ay.4(n) = 0. So
2%-1

n+ forer = (Z ai(n)fi + foo + Z ai(n)fi) + fors

i=0 i=2k+5

2k—1 +00

= [Z ai(n)f; + f2k—2) + (f2k+3 ) ai(nm] :
i=0 i=2k+5

Let n = ZZk 1a(n)f Then ayg(n) = ap(n’). Since n’ < f and v’ + foro < for+1, We have
a;(n’ + f2k—2) =a;(n+ f2k+l) forall 0 <i < 2k. Thus

ao(n + fus) # ap(n) & a;(n’ + fu) # ap(n’)

2k
— n'=Za(n)f, {kal f2k1_1}

2
i=0
where in the last step we use Theorem 2.5(i). By Eq (2.1) and Eq (2.4),
Ja-1 ¥ fren = Jar1 t for + = f2k+3 +

2 2
So when u = 001, ag(n + fu+1) # ao(n) if and only if

Op(n) =n' + forsa € {f2k+3 Joks f2k+3 + far — 1}-
e Suppose u = 010. Applying Eq (2.1) twice, we obtain that

2foks1 = fora + for + fors1 = fora + forsn.

Then
2k-1

n+ fr = (Z anfi+ fonr + ai(n)ﬁ) + foun

pary i=2k43
2k—1 +00

= [Z ai(n)f; + f2k—2) + (f2k+2 + Z ai(n)fi] :
pary i22k3

Letn' = 22" "a,(n)f.. Using Theorem 2.5(i), the same argument as in the case u = 001 leads us
to the fact that

2% P F
ap(n + frus1) # ap(n) & n' = Za(n )i € {ﬂ % - 1}
i=0

& Ou(n)=n"+ fors € {f2§+3, f2§+3 - 1}-
e When u = 100, we have ay,_»,(n) = ay_1(n) = 0. Then
2%k-3 +00
n+ foue = (Z a(n)fi + fa + Z ai(”)fi] + faks1
i=0 i=2k+3
2%-3 400
- (Z ai(n)fi] + [f2k+2 ) a,-(n)fi)
i=0 i=2k+3
which implies that ay(n + for1) = ap(n). O
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2.3. Integers with the same truncated f-representation

To apply Theorem 2.5, we need to investigate the integers of the same truncated f-representations.
The following two lemmas (Lemma 2.6 and Lemma 2.8) serve for this purpose.
For all £ > 0, denote

E| = {x eN : Op(x) = fz;”} and EJ = {xe N @ @y(x) = fz"” ka}

LetE, = E, UE/ = (xg.k)) j>1 Where x(k) < xgk) < xgk) .. The first values of E, are
k f2k+3 f2k+3 f2k+3 Joks3 Joks3
(xE. ))j>l = + fo, T+ forszs T+ foksas = + foksss
2 2 2
f2k+3 ka 3 f2k+%

+ for + forws, T + foraz + foras, =

2 2

> + fok+6 )

Lemma 2.6. Let k > 0 and x € E; with x = xi.k) for some j > 2. Then x — foryr = xg.k_)l € E;.

Proof. Let x € E} with x = x;k) for some j > 2. Note that JE + fox = foks2 + % By Proposition 2.3,
have ari,3(x) = dysa(x) =0. When 0 < b < fo, — ka L we see

f2k+3

O (x +b) = ( + ka) +b < forss

which implies that x + b ¢ E;. When fo — 25 <b < foy,

f2k+3

f2k+3
) .

2

Ou(x +b) = ( + fzk) +b— forz <

Sox+ b ¢ E;. Since Op(x + forsn) = fz"“ , we have x + foryr = xj+1 S

Let x € E}, with x = xg.k) for some j 2 1. According to Proposition 2.3, ay.3(x)as4(x) = 00, 10 or
01, which can be divided into two sub-cases.

. a2k+3(x)a2k+4(x) = 00. For 0 < b < fy, we see O(x + b) = O(x) + b = 22 4 b, Thus
X + f2k = x]+1 E”
® i 3(X)ara(x) = 01 or 10. For 0 < b < fy, we see

Thus x + b ¢ E;. For f5, < b < fo42, We have
2 2
which yields that x + b ¢ E;. Noting that @ (x + fr42) = Dp(x) = f”” , we obtain that x + fo,0 =
(k) ’
€EE.
]+1
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From the above argument, we see that if x = xi.k) € E; for some j > 2, then either x — fo10 = xﬁ-k_)l €
E/ or x — forso = X( ", € E; with ay3(x — fas2)aoksa(x — fors2) # 00. The result holds. m|

Remark 2.7. From the proof of Lemma 2.6, we see the gaps between two adjacent elements in E; are
for and foryp. That is x(k) - x(k) Jfor or forsn for all j > 1. Moreover, the gaps between two adjacent
elements in E; are f2k+2 and f2k+3

For all k£ > 0, let

Fk—{yeN d>k(y)—f2"”}:(y§“>j21 and F,z={yeN:<Dk+l(y)=f2§”}

(k)

where y(k) <y, < y ) <.... Write F » = Fy — F}. The first values of F} are

2 2% 2 2
(y(k))j>1 : i Jaie + fok+3, font + foksdr, —— Jnt + forss,
2 2 2 2
Jor Jox
2“ + fakes + fores _2+1 + forses - |-

Lemma 2.8. Foranyy € F; withy = y;k) for some j > 1, we have

& _ |y T Saasss HYEF
7 v+ fas, ify€F].

Proof We prove the result by giving the construction of Fy. It clear that y(k) = fz“‘ . Now suppose

y= yj € F where j > 1. According to Proposition 2.3, we see ay3(y)ans4(y) = OO, 01 or O1.

o a2k+3(y)a2k+4(y) =00, i.e., y € F’ Note that f2k+l fk_ ka_3 .ForO<b< f2k+3 - M , we have
(Dk(y +b) = f2k+1 + b, so y+ b ¢ Fy. For f2k+3 - fzk“ <b< f2k+3’

f2k+1 f2k+1
2 2

d)k(y + b) = +b - f2k+3

soy+b ¢ Fy. Since O (y + fors3) = Or(y), we obtain that y + for3 = ]+1 e F-F,.
o ar3(Mansa(y) = 10 0r 01. For 0 < b < forso — 21 we have Dy(y +b) = 2 + b, soy + b ¢ F.

For forsn — fz’;“ < b < forsa, since
Dy +b) = EE Joira < Lo ;
2 2
we also have y + b ¢ F. It follows from @ (y + fors2) = @u(y) that y + forin = j+1 € Fy.
The result follows from the above two sub-cases. O
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Remark 2.9. From the proof of Lemma 2.8, we see the gaps between two adjacent elements in F are

Jfori2 and fori3. Thatis yE.lfr)l - yi.k) = fos2 OF for43 forall j > 1. Moreover, the gaps between two adjacent

elements in F}” are fy, and foi4.

2.4. Two subsequences of s

The subsequences (.1 k=0 and (S =0 can be determined according to the parity of k; see
2 2

Lemma 2.11. We start with an auxiliary lemma which concerns the parity of %
Lemma 2.10. For all k > 0,

. I, ifk=0or3 (mod 4),
(i) fu = . (mod 4),
3, ifk=1or2 (mod 4),
(ii) £ 2, ifkis even, (mod 4)
ii = mod 4).
#1700, ifkis odd,
Proof. (i) Note that f, = 1 and f, = 3. Since f5, is odd for all n > 0, using Eq. (2.1) twice, we have for
all k > 2,

fok = fora + foro1 = 2fok2 + fokea =2+ fopz) (mod 4).

The result follows by induction on k.
(i1) The initial value is f; = 2. Using Eq. (2.1) and the previous result (i), we have for all k > 1,

2, k=0,2 (mod4),

P mod 4
Jake1 = fau + Sfara {0, k=1,3 (mod 4), ( )

which is the desired result. O

In the calculation of H,,,, we need to know s, explicitly for some n. The next lemma determines
the values of two sub-sequences s.

Lemma 2.11. Forall k > 0,

1, ifkisodd, 0, ifkisodd,
. . and SM_] = . .
0, ifkiseven, z 1, ifkiseven.

S =
3

Proof. By Eq (2.1), we obtain that for all k > 0,

Bt = s+ 12
= (for—2 + fox—2 + fok-1)/2
k—1
:fzk_2+f2§“ = =;le~+§. (2.5)
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When £ is odd,

= (far2 + fok-4) + (for—6 + fox—g) + - +(f4+f2)+fo+£

= fa-1 + fas+--+ fs+ fi (by Eq. (2.1))

f2k+l

= 2 Jais1. (2.6)
i=0

When k > 2 is even,

f1

fz}m = (fak—2 + fak-a) + (faee + frug) +-- -+ (2 + fo) + =

:ka_1+f2k_5+"'+f3+g (byEq (21))

k=

=2, fus el Z faiss + o 2.7)

It follows from (2.6) and (2.7) that for all £ > 0,

( f2k+1) {0, if k is odd,
ap =

2 1, ifkiseven,
and
(f2k+1 ) 1, ifkisodd,
ao - 1 = . .
2 0, ifkiseven.
Then by Proposition 2.4, the result follows. I

3. Partition of the lattice

According to the values of the Hankel determinants of s, we tile the integer lattice using the fol-
lowing parallelograms. Given a k > 0, write the elements in E; |, F}’ and E| in ascending order as
follows:

E = (@)1, F/ =iz, Ep=dis1-
Moreover, let 8; = 8, + f for all i > 1. We define three different types of parallelograms: fori > 1,

:{(m,n)eN2 Dok < fors, a’i—fzk+2<n+mﬁafi},
Z{(m,n)GNz : fzkﬁn<f2k+z,ﬂi<n+m$ﬂi+f2k+1}, (3.1)

= {(m,n) eN? Soe1 S0 < forer, Vi— S <n+mS7i};

see Figure 1. Let Uy = U1 Uy, Vi = Ups1 Vi and Ty = U Ty
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Proposition 3.1. The parallelograms {Uy;}, {Vi.}), and {T;} introduce a partition of pairs of positive
integers. Namely, N X Ny = | |5o(Uy U Vi U Ty) where U denotes the disjoint union.

Proof. Letm > 0 and n > 1 be two integers. Since (fi )0 and (yx)r>1 are two increasing unbounded
non-negative integer sequences, there exist k > 0 and £ > 1 such that foy < n < fy andy, 1 < n+m <
v¢ where vy, := 0. The result clearly holds when £ = 1. Now we assume that £ > 2. From the proof of
Lemma 2.6 we see that y, — y,_1 = fors2 OF forys forall € > 2. When y, — for < n+ m < y,, we have

Ui, 1f for <0< forars
(m,n) € ,
Ty, if fore1 <1< forans

see also Figure 5. When y,_; < n+ m <y, — fo, we have the following two cases:

for forso foria

2
By B

Bs

Figure 5. Partition of the strip [0, +00) X [ for, for+2)-

Case 1: y, — v,-1 = fors2- In this case, we shall verify that (m,n) € V;. To do this, we only need to
show that y,_1—fx € F}/. Since y,_; € E}, we have Oy(y,_1) = % and Oy (y,_1—fo) = %—fzk = %
So (y¢-1 — fu) € F. Suppose on the contrary that (y,; — fx) € F|. Then @y (ye—1 — fu) = % and
Oy (ye-1) = % This implies @y (ye_1 + fors2) = fz’;] and (ye—1 + fos+2) € E. Note that in this case
Ye = Ye-1 + faa. We conclude that y, ¢ E; which is a contradiction. Hence, (y,-1 — fx) € F}. The
result follows.

Case 2: y¢ — yr-1 = fuss. We assert that, in this case, y, | — fu € F}. Since y,; € E;, we have
Or(ye-1) = % Consequently, @ (y,1 — fu) = % and (ye-1 — fu) € Fi. Suppose (y,1 — fau) € F.
Then @y(ye-1) = 22 and @y (ye) # 220 It follows that Op(yet + fuus) = 22 + for. Since
Ye-1 + foars3 = Ye, We obtain that y, ¢ E; which is a contradiction. Now we have y,; — for € F}.
This y1€1dS that q)k+1(')/€—1) = % Observing that q)k+1(’)/g - f2k) = q)k+1(’)/g_1 + f2k+2) = fZI;S , WE S€€
’)/g—kaEE;c_'_l.SO(m,l’l)EUk. O

4. Relations of Hankel determinants
In this section, we use the Theorem 2.5 to show the determinant value inside Uy, Vi, T is 0. For

some integer k > 0, we prove the relationship between the determinant value of the boundary of Uy,
Vi, Tr. We assert that as long as we know one value of Uy(V; or T}), we can know all its values.
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4.1. Inside the parallelograms

The Hankel determinant H,,, vanishes if (m,n) is not on the boundary of any parallelogram Uy,
Vk’,' or Tk’,'.

Lemma 4.1. Let m > 1 and n > 0 be two integer.
(i) If (m,n) is inside Vy; for some k > 0 and i > 1, i.e.,

{f2k+1 <n< foum—1,

Bi+tl<n+m<pi+ foym —1,

then H,,, = 0.
(ii) If (m, n) is inside Ty; for some k > 0 and i > 1, i.e.,

S +1 <0< forem—1,
yi—fgk+l<n+m§’y,-—1,

then H,,, = 0.
(iii) If (m,n) is inside Uy; for some k > 0 andi > 1, i.e.,

ai—f2k+2+1<n+m$al~—1,

{f2k+1§n<f2k+3—1,

then H,,, = 0.
Proof. Let A,,,; be the i-th row of H,,,,. Then

Sm Sm+1 " Sman-1 A,
. : A
Sm+l  Sm+2 - . m+1
Hm,n = det " " = det .
Apin-
sm+n_1 e “ee sm+2n_2 m+n—1

(1) When m < B/ + 1, recall that 87 = B; — fu € F}. Since n < fy,2 — 2, by Lemma 2.8, we have
OB, + ) # kaT+1 or f%*‘ — 1 forall I < j < n. Then it follows from Theorem 2.5(i) that

Apge1 = (Sg+15 Sga2s -+ Sgan)
= (Sﬁ,'+1’ s,B,'+27 cer S,B,'+n) = Aﬂi+l,

which gives H,,, = 0. When m > g + 1, note that n + m < B, + fu42 — 1. By Lemma 2.8, we have
O (m+ j) + % or % — 1forall I < j < n. Then it follows from Theorem 2.5(i) that

Am = (Sm, Sm+1s « oo Sm+n—l)

= (Sm+f2k9 sm+f2k+19 L] Sm+f2k+n—1) = Am+f2k-

So H,,, =0.
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(i1) Recall that y; € E;, and by Lemma 2.6, y; and y; — fo,» are adjacent elements in E;. Let
k y y
. Yi—fur+1—m, ifm<yi— oy + 1,
0, ifm>)/,~—f2k+2+l.

Combining Lemma 2.6 and Theorem 2.5(ii), we have A,.,, = A,4r45,,, Which means H,,,, = 0.
(iii) Recall that @; € E} | and by Lemma 2.6, a; and @; — fx.4 are adjacent elements in Ey,;. When
m < @; — foqa + 1, note that @; — for4 + 1 < @; — fors2 — 1. By Theorem 2.5(ii), we have

Adi—f2k+4+1 = (sfli—fzk+4+1’ Sai=frrat2s + s Sai—fzk+4+n)
= (Sai—f2k+2+1’ Saj—forsat2s < s(li—f2k+2+n) = Aai—f2k+2+1'
Thus H,,,, = 0. When m > @; — forsa + 1, since n + m — 1 < @; — 2, by Theorem 2.5(ii), we obtain that
Am = (Sma Sm+ls o Sm+n—1)
= (Sm+f2k+3’ Sm+ forpatls oo Sm+f2k+3+n—1) = Am+f2k+3

which also implies H,,,, = 0. O

4.2. Determinants on the horizontal edges of the parallelograms

We first deal with the Hankel determinants H,,,, on the horizontal edges with n = f5 and fo4)
where k > 0.

Lemmad4.2. Letk>0andi > 1.

(i) (Bottom edge of V) Hgor o = Hgi1, g3, forall1 <r < for.
(ii) (Bottom edge of Uy;) Hy,— pos+r, i = Hay o, e fOr all 1 < v < fopin.
(lll) (BOttOIl’l edge of Tk’,') H i~ ok +n Prel — (—1)r+1H i_kaH,kaHfOI" all 1 <r< f2k with yi—ﬁk+2+r > 0.

Pl"OOf. (1) Let Aj = (Sﬁ[{_,_j, Sﬁ[{+j+1, ceey Sﬁ;+j+fik—1)' Then for 1 < ] < f2k+1’

Aj Aj+1
Aj+1 A-i+2

Hﬁ;*—j’ka = det : and Hﬁfﬂ*l,.fzk = det
Af2k+j—1 Af2k+j

Recall that 8 € F'. By Lemma 2.8, since j + for — 1 < fui2 — 2, we see Oi(B) + €) # % or % -1
forall 1 <€ < fys2 — 2. Applying Theorem 2.5(i), we have

Aj = (Sgsjs Spajrls - oo Sptjrfu1)
= (Sﬁf-+j+f2k’ SB+j+1+fos + v v Sﬁ,’-+j+2f2k—1) = Af2k+j'

Therefore, for 1 < j < fory1,

Aj Afyj Ajii
Aj+1 Aj+1 Aj+2

Hﬁf+j»f2k = = = (_l)ka_l : = Hﬁ§+j+1,f2k
Af2k+j—1 Af2k+j—1 Af2k+j
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where the last equality follows from Lemma 2.10(1).
(ii) Recall that a; € E; | and @y () = % Lety = a@; — fors3. Then @y (y) = % andy € F}.
Let Bj = (Sy+j’ Sy+j4ls « o s sy+j+f2k—1)' Then for 1 < j < f2k+2’

Bj Bj+1
B Bjs»

Hy.; p, = det : and H,, . p, = det
Byt j1 Biyj

Since j + for — 1 < fore3 — 2, by Lemma 2.8 and Theorem 2.5(i),

Bj = (Sy+j, SytjHls oo e Sy+j+f2k—l)

= (Syajafoes Sytjalafus o oo Syrjrzfy-1) = Bpyaj.
Therefore, for 1 < j < for40,
_ Sfo—1 _
Hyj g = (D Hysjir, g = Hys i, gy

where the last equality follows from Lemma 2.10(i).
(iii) Recall that y; € E;. By Lemma 2.6, g := y; — fas2 € E;. Write

Agrj = (Sgrjs Sgrjats o5 Sgajifurai=1):

For1 < r<f2k,

Ag+r Ag+r+1
Ag+r+l Ag+r+2
Hevr, o = : and - Hgirin, oy =
Ag+r+f2k+1 -1 Ag+r+.f2k+1

By Theorem 2.5, Ag.r = Agiripy,,- Then using Lemma 2.10, for all 1 <7 < fi,

— (111 —
Hg+r,f2k+1 = (=D Hg+F+1,f2k+1 - Hg+’+1,f2k+1

and Hg+r,f2k+1 = (_l)ka_ng+r+f2k9f2k+l = (_1)1+ng+V+f2k,f2k+|' o

In fact, for all i > 1, the Hankel determinants on the bottom of Uj; and V;; take the same value

which depends only on k. The following lemma helps us to connect the determinants on the bottom of
Uk,* and Vk,*.

Lemma 4'3' Letk Z O andi Z 1' Uyl+1 _71 = f2k+3) then H7i+f2k+l7f2k = H7i+1_f2k+1’f2k' lf71+1 _’}/l = f2k+2)
then Hyor o = Hy— st e

Proof. Suppose yiy1 — Vi = farss. Then Op(y; + for) = fz}f + for- Since 3 for = farrz + fa-1 < farss, bY
Theorem 2.5(ii), we have

(S7i+f2k+l e s7i+3f2k—l) = (S%+f2k+1+f2k+1 S’Yi+3f2k—1+f2k+l)

(S7i+1—f2k+1 e SVi+1+f2k—1) .
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Therefore

Syi+futl " Syi+2fa Syi—futl 7" S¥isi
H7i+f2k+lsf2k = . : . =
Sy2fu T Sy+3fu-l Syt T Syl

= H’)’i+l‘f2k+laf2k‘

When y;.1 —vi = fors2, We have Oy (y;) = % By Theorem 2.5(ii),

(S7i+1 T s7i+2f2k—1) = (S'yi+1+f2k+l T S)’i+2f2k—1+f2k+1)
= (S7i+l_f2k+l T S7i+l+f2k_l) .
S0 Hyi1, . = Hy, ~ 1, far- O
Next we give the connection between Ty ; and Ty ;1.

Lemma 4.4. Foralli> 1, H7i_f2k+laf2k+1 = H7i+l_f2k+lsf2k+1'

Proof. If yiy1 — ¥i = fares, then Opy () = kaTH and @y, 1(y; + fare1) < hkT+5 By Theorem 2.5(ii), we
have

(Syi—f2k+1 o S7i+f2k+1—2) = (S)’f—fzk+|+f2k+3 e s7i+f2k+l—2+f2k+3)

= (S7[+l_f2k+1 e S7i+|+f2k+1—2) :
Consequently’ H)’i—f2k+1,f2k+1 = H7i+l_f2k+l»f2k+l .

If Yivl = Vi = f2k+2, then (I)k+1(’)/,') = f2§+3 + f2k+3 or % + f2k+4~ By Theorem 25(1), we have

(Syi_f2k+1 e s7i+f2k+1—2) = (SY;—f2k+|+f2k+z e s7i+f2k+1—2+f2k+2)

= (S7[+1—f2k+] T S71+|+f2k+1—2) .

H,

i=fsts et = Ay =t St - a

Consequently, H,

According to Lemma 4.3 and Lemma 4.4, the values of the determinants on the bottom edges of
Uy and Vi ; only depends on k. We improve Lemma 4.2 to the following proposition.

Proposition 4.5. Letk > 0. Foralli > 1,

(i) (Bottom edges of U;; and V) forall 1 <r < foy and 1 <17 < forso,

Hai_f2k+3+r/af2k = Hﬂ;+r,f2k = Hfll—fzk,fzk;

(ii) (Bottom edge of Ty;) Hy— o ir sy = (=1 Hy Z o1 s Jorall 1 < v < fo with yi— fasn+r > 0.

Proof. Since a; — fu2 € E; and B; + fy € E;, Lemma 4.3 shows that the values of two determinants
on the bottom edge of two adjacent parallelograms in {Uy j}j>1 U {Vi j}j>1 are the same. Then Lemma
4.2 implies the result (i). The result (ii) follows from Lemma 4.2(iii) and Lemma 4.4. |
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4.3. On the boundary of Uy;

Lemma 4.6. Letk >0andi> 1. Forall 0 <r < forp — L witha; — fopqa +2+1 20,
r(r—1)

(i) (Right edge of Uk,i) Hai—f2k+3+l+hf2k+3—1—r = (_1)rk(_1)THai_f2k+3+1af2k+3_l’

r(r=1)

(ii) (Left edge of Uk,i) Hdi_f2k+4+2+r»f2k+3_l_r = (_l)rk(_1)TH0/i—f2k+3+1,fék+3—l’
(iti) (Upper edge of Uk ;) Ho,- fyss2+r, fes—1 = (1) Hom py 51, frs-1-
Proof. Write y = @; — fos3. Recall that a; € E}, . So @y,1(y) = 2 and y € F].
(i) For 0 < r < fos, let Ay, be the j-th column of M., p,.,-1-. Applying Lemma 2.8 and

Theorem 2.5(1), We S€€ Syirsr = Syirstafy 108 1 < € < foruz3 —r—2and Syip,.,1 # Syrpys—14/,- Lhen
Proposition 2.4 and Lemma 2.11 yields sy, f,,,-1 — Sy+ fyus-14f = (—1)F. Therefore,

Sy+r+1 Sy+r+l+fu 0
Sy+r+2 Sy+r42+ o 0
Ay+r+l - Ay+r+f2k = - =
Sy+ forrz—2 Sy+ foka3=2+ for 0
k
Sy+ frrrz—1 Sy+ frrrs—1+ fox (-1
and
Hy+l+r, Porrz—1-r — |Ay+r+l Ay+r+2 s Ay+f2k+3—1|
= |(Ay+r+1 - Ay+r+f2k) Ay+r+2 see Ay+f2k+3—l
— 0f2k+3—2—r,1 My+”+2»f2k+3_r_2
(—-DF *
_ k 1+ fok3—1-r
- (_1) (_ 1) fZI\+3 Hy+r+2,f2k+3—r—2
_ k+r
- (_ 1) Hy+r+2,f2k+3—r—2 (4' 1)

where in the last equality we apply Lemma 2.10 and 0, ; denotes the i X j zero matrix. It follows from
Eq (4.1) that

Hyot ot = (1) Hyo gy = (GO Hys 003
= DA DM e

r(r—1)

:(_l)rk(_l) 2 Hy+1+r,f2k+3—1—r-

(i1) Let By_g,,,,+14r+; be the j-throw of M,_¢, .24 5,.5-1--. Combining Lemma 2.8, Theorem 2.5(1),
Proposition 2.4 and Lemma 2.11, a similar argument as above yields
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By—fzk+z+l+r+l By_f2k+2+1+r+1
Hy_ oy rs24r, fras—1-r = By = By
By+f2k By+f2k - By
_ | F My e s 104 )
(_1)k 01»f2k+3_2_’
k
= (=D Hy oy s240+1), fors— 1=+ (4.2)

Applying Eq (4.2), we have

Hy—f2k+2+2+r,fzk+3—1—r = (- 1)k+r(_1)k+r+l (-1 )k+f2k+2_2Hy+l,f2k

Qk+r+ fogs -2 ogpn—r—1)
p)

= (_1) y+1,f2k

Qk+r+fop 10 =2)fop42-r=1) .
=(=1) 2 Hyifon (by Lemma 4.2(ii))
= (=) (=1)"7 Hyy1 pyos1- (by Lemma 4.6(i))

(i11) Let C; be the j-th column of My_g,, ,.24r f,,5-1- Then
Hy_f2k+2+2+”7f2k+3—1 =det(Cy, G, ..., Cf2k+3_1)
= det(CI, C29 DRI Cf2k+3—l—r, ;’ éa ey C;)

where C;, = Chyis—1-r+p = Cppis—1-r4p-fy for 1 < p < r. According to Lemma 2.8, Theorem 2.5(1), we
have sy.¢ = Syiap, forall 1 < € < for3 —2 and for3 + 1 < € < for3 + 7 — 2. By Proposition 2.4 and
Lemma 2.11, we obtain that sy, . —14 — Sys frea—1 = (=D and sys e = Sy fones = (=1F. Thus

’ ’ N o 0f2k+3—l—r,r
(€1, Chan s O = P
where X is the r X r matrix
0 . 0 (_1)k+1
(—1F
D =DF 0

Expanding by the last » columns, we have

I _ det [ Mr-tus2snpra-t-r Opusmtons
y=fos2+2+n, forz—1 = A€ « X

.
= (_1)(k+1) (_1) 2 Hy—fzk+2+2+hf2k+3—1—’
= (~D)E ) D) By gy (by Lemma 4.6(0))
= (_l)rHerl,fzkﬁ—l'
O
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Remark 4.7. From Proposition 4.5(1) and Lemma 4.6, Hankel determinants on the boundary of Uy;
can be determined by Hy,—pyy 5 +1. 51 = H s s (the upper right corner of Uy ).
ok L1 fors

4.4. On the boundary of Vy;

Lemma4.8. Letk>0andi> 1. Forall 0 <r < forq — 1,

. rr+l)
(i) (Left edge of V) Hﬁ;—.fzk+1+2+r,f2k+2—1—r = (_1)rk(_1) : H,B,’»—.f2k+1+2,fzk+2—1’
r(r+1)

(”) (Right edge Of Vk,i) Hﬁ;+l+r,f2k+2—1—r = (_1)rk(_1)THﬂ;+l,f2k+2—l’
(iii) (Upper edge of Vi) Hﬁf—f2k+1+2+r,f2k+2—1 = Hﬁf+17f2k+2—1'

Proof. (1) Denote by Ag_p,.,+1+r+; the j-throw of Mg _p, . 124 y,5-1-r- Then

A,B,f—fzkn +2+4r Aﬁ’§ —fokr1+2+r1

Aﬁ,’- ~frrr1+2+r+1 Aﬁ; — ka1 +2+r+1

Hﬁf—f2k+1+2+r,f2k+2—1—r = det = det

Ag Agpy — A,
From Lemma 2.8, Theorem 2.5 and Lemma 2.11, we have
A,B;"'ka _A,B: = ((_1)k’ 0’ T O)
ForO<r< fore1 — 1,

H — * Mﬁ,’-—fzkﬂ F2+(r+1), fokr2—1-(r+1)
Bi=frer1+2+1, fopra=1-r = \ - 1\k
=D 01»f2k+2—2—r

= (DN DT T o) a1k
= (=" Hp 52441 frr-1-r41)- (by Lemma 2.10(1))

Thus

— (_1)k+l+r—l(_1)k+l+r—2 .

k+1
Hﬁg—f2k+1+2+raf2k+2—1—r (=D Hﬁ§+2—f2k+1»f2k+2—l

r(r=1)

:(_l)r(k+1)(_1) ’ Hﬁf+2—fzk+|,f2k+z—1'

(i1) Let Bg .r.j be the j-th column of Mg i14r frpir-1-r-

Spiet+r  SBa2+r T SBfuia-]
Hg i 141 pyn-1-r = det : :
SBitpusa=1 SBtfusa T SBA2fen—3-r
= det (B13§+1+r BB,’.+2+r T Bﬁ,’-+f2k+2—1)
= det (Bﬁl(+l+r - B,B;+1+r+f2k Bﬁ;+2+r T Bﬁ,’-+f2k+2‘1) ’

Recall that g} € F/. By Lemma 2.8, 8} and 8] + fy+» are adjacent elements in Fy. It follows from
Theorem 2.5(i) and Lemma 2.11 that
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0pya2-r1 Mpie(41) fra=1-0r+1)
(=1)F *

= (=D D" T e 1)
= (_1)k+1+rHﬁl’.+l+(r+1),f2k+2—1—(r+l)- (by Lemma 2.10(i))

Hg tor frr-1-r = det(

r(r=1)

Hence Hﬂ;+l+r,f2k+2—l—r = (_1)r(k+l)(_1)THB;+l,f2k+2—l'
(ii1) Let Cp— g, +14r+5 bE the j-th column of Mg _p, . 1247 fy,,-1- Then

Hy pyyaer st = 4t (Copiioer Cooproiaernt - Caagar)
:det(cﬁ;*kaH*Z*r Cﬁ,'-+f2k Ci C;)

where C), = Cpgs 1 p—Cpip for 1 < p < r. By Lemma 2.8 and Theorem 2.5(i), we have sg. ¢ = Sgrir1
for 1 <€ < fopro—2and forp + 1 <€ < r+ frry2 — 1. Moreover, by Proposition 2.4 and Lemma 2.11,

we have SBi+ fuct frsa=1 TSP+ frsa—1 = (_1)k+l and SBi+fuctforsr T SBi+farer = (_l)k' Thus

’ r\ _ 0f+—1—r,r
G =)
where X is the r X r matrix
O 0 (_1)k+1
(-1
(=DM (=1 0

Now expanding Hg g1 +247 fria-1 by its last » columns, we obtain that for 0 < r < fy — 1,

Heo s = det Mﬁf—f2k+1+2+r,f2k+z—1—r 0f2k+2—1—r,r
Bi=fakr1 +2+47, frgr2—1 — « X

a=Dr
= (_1)(k+1)r(_1) ’ Hﬁf‘f2k+1+2+ﬂf2k+z—1—r
= HB;_.f2k+l+2sf2k+2_1' (by Lemma 4.8(1))

O

Remark 4.9. From Proposition 4.5(i) and Lemma 4.8, Hankel determinants on the boundary of V;;

can be determined by H BELy o1 (the lower left corner of V; ).

4.5. On the boundary of Ty,
Lemma 4.10. Letk > 0andi > 1.

(i) (Leftedge of Ty;) Forall0 < r < for — 1 withy; — fuwz +2+r 20,
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r(r=1)

k
HYi_f2k+3+2+r»f2k+2_1_r = (_l)r (_1) ’ H)’i_f2k+3+27f2k+2_1'

(ii) (Right edge of T};) Forall0 <r < for — 1 withy; — 2+ 1 +r >0,

_ rk =)
H)’i_f2k+2+1+r»f2k+2_l_r_(_1) (- Hyi_f2k+2+l’f2k+2_l'

(iii) (Upper edge of Ty;) Forall0 <r < fop — L withy; — fys3 +2+1r >0,

H)’i—fzk+3 247, for—1 = H’}’i‘fZlH—} +2, for2—1+

Proof. To shorten the notation, write x = y; — fyi3 +2and X’ = y; — fors2 + 1.
(i) Let max{0, —x} < £ < fo — 1 and let A; be the jth row of H,.ss,.,-1—¢. By Theorem 2.5(ii) and
Lemma 2.11, we see

Apamtt = A = (D10 ... 0).
Then for max{0, —x} < € < fo — 1,
A Ay
A Ay
H x+0, foran—1- = det = det :
Afzk+2—2—f Af2k+2—2—t’
Af21<+2—1—f Af2k+2—1—f - Afzk—l—f
_ * M s ex1), frr—1-(e41)
(- 1)k+1 01,f2k+2—2—f
= (=D (DT ] ) s -
= (=D Hys(oe1) fyr-1-e1). (by Lemma 2.10(1))

Applying the above equality r times, one has

Heirpyrir = (=DM 2 00 (1) H,
= (-1y*"-1)"T"H,

Sorsa=1

Sakra—1+

(i1) Let max{0, —x'} < € < fy — 1 and let B; be the jth column of H, ¢ 5,,,-1-¢. By Theorem 2.5(ii)
and Lemma 2.11, we see

0
Bi = Bi.jy., =

(_1)k+1

Therefore, for max{0, —x'} < € < for — 1,
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Hy i,y n-1-¢ = det (Bl B, --- Bf2k+2—1—f)
= det (Bl - Bl+f2k+l B, .- Bf2k+2—1—5)

_ det [Orra2-e1 Mesrn pr-i-)
(_1)k+1 *

= (=D¥! (_1)1+f2k+2_1_[Hx’+([+]),f2k+2—l—([+1)
= (—1)k+’€Hx'+(€+1),f2k+2—1—({+1)- (by Lemma 2.10(1))

Applying the above equality r times, one has
Hx’+r,f2k+2—l—r — (_1)k+r—l(_1)k+r—2 L. (_1)ka’
. =1
=(-1 k(_l) : HX’~fzk+2—1'

(111) Let max{0, —x} < r < fy — 1 and let C; be the jth column of M,., 5, .,-1. Then

JSakea—1

Hyorpypr = det(C1 Gy -++ Cpypi)
=det(C; Cy -+ Cpprn C - C))

where C), = Cpy,r-14p — Cpy—r-14p for 1 < p < r. Note that

Syi—futl T Syi-foax+r Syi—farsatl T Syi—fuantr
’ 7\ _ . . . _
I R
Syitfas=1 7 Syt frsi+r-2 Syi-1 Tt Syi+r-2

By Lemma 2.6 and Theorem 2.5(i1), for 1 < ¢ < forso —2and fyo + 1 < g < forso + 17— 2,

Syi=fu+q = Syi-fuir+q-

Moreover, by Lemma 2.11, sy, -1 — Sy,-1 = (=¥ and s,,+p,,, — s, = (=1)**'. Then

’ r\ _ Of+—1—r,r
6 o)
where X is the r X r matrix
0 0 (—1)k
(_1)k+1
(~DF (=D 0

Therefore,

Mx+r,f s—1-r 0f (+2—1—1,1
Hx+r,f2k+z—1 = det( : 2 * 2)(

RPN i
= (_l)k (_1) 2 Hx+r,f2k+2—l—r

= H, (by Lemma 4.10(1))

Sk =1

O
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Remark 4.11. From Proposition 4.5(i1) and Lemma 4.10, Hankel determinants on the boundary of T ;
can be determined by H s , L fa l(the lower left corner of 7} 5).
2 e Lo 2kt

5. Evaluating the Hankel determinants

In section 4, we show that for any k > 0, to know all the determinants on the boundary of Uy ; (resp.
Vii» Ty;) for all i, it is enough to know the value of one determinant on the boundary Uy; (resp. Vi,
or Ty;) for some i. In this section, for certain i, we shall give the expression of a determinant on the
boundary Uy ; (resp. Vi, or Ty ;) for all k.

The next result allows us to determine the determinant on the lower left corner of Uy ; by using the
determinants on the boundary of U;_; . and Tj_; ..

Lemma 5.1. (Lower left corner of Uy;) Forallk > 1 andi > 1,

k
Hdi—f2k+3+lsf2k =(=D (Hai_f2k+3+27f2k_l - H(Yi_f2k+3+l»f2k_1)’

Proof. Lety = a; — fy+3 and let A; be the jth column of H,,; 4,. Then

Sy+1 Sy+2 T Sy+fau

Hy+1,f2k = = det (A1 A2 Aka_l) .

Sy+fu Sy+fuctl Sy+2 o1

Recall that @; € Ej,,. Then @ (y) = 2 and @ (y + for) = 2. This implies y € F/ and
v+ fo € Fr_i. By Lemma 2.8 and Theorem 2.5(1), the fact y + fo, € Fy—; yields that sy, = §y.4, ,+¢ for
1<¢< f2k -2. By Lemma 211, Sy+for—1 = Sy+ o+ frra—1 = (—1)k+1 and Sy+fox T Sy+for+fokon — (—l)k. So

Hyor gy = det(A1 = v, As Ap)
0 Sy+2 Sy+fon
- 0 Sy+fu—1 Sy+2fn-3
DR sy, Sy+2 a2
DF Syapuen Sy42 fri1
= (D D" Hy gy + (D (DX (5.1
where
Sy+2 T Sy+ fae Sy+ fr+1 Sy+2 f—1
: . : Sy+2 tt Syif:
X = : . . — (_1)f2k—2 *
Sy+fu-1 Sy+2fn-3
Sy+fauctl Sy+2fo~1 Sy+fu-1 Sy+2/f~3
Since y + fy € F, by Lemma 2.8 and Theorem 2.5(i), we see
(s)’+f2k+1 Sy+2f2k—l) = (Sy+1 Sy+f2k—1)
and X = (=1)*72H,; ;1. Then the result follows from Eq (5.1) and Lemma 2.10. O
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Now we show how to obtain the determinant on the lower left corner of 7} ; by using determinants
on the boundary of Uy;_; and Uj_j ;.

Lemma 5.2. (Lower left corner of T;) Forallk > 1 and i > 2,
k
H%—fzk+2+1,f2k+1 =(-D"(H i~ P42, fre—1 T H i_f2k+2+1sf2k+l_1)'

Proof. Lety = y; — fors2 and let A; be the jth column of H,,; f,.,,. Then

Sy+1 Sy+2 e Sy+ fore1
Hy+1,f2k+1 = o = det (Al Ay o Af2k+l_1) ’

Sytfuer Sy+fua+tl T Sy+2pp-1

Recall that y; € E;. By Lemma 2.6, y € E; and @ (y + fors1) = fz’é“. This implies y + for+1 € Fi. By
Lemma 2.8 and Theorem 2.5(i), the fact y + fy1 € Fy yields that sy, = sy g0 for 1 <€ < frrq — 2.

— k — k+1
By Lemma 2.11, Sy+foee1=1 7 Sy+ i+ fu—-1 = (-1)" and Sy+foeer T Sy+forn+fu = (-=D*". So
Hyotjy = det(Ar = Arp, As o Ap )
0 Sy+2 T Sy+ forst
- 0 Sytfuei—1 "7 Sy+2fp-3
k
(-1 Sy+ foret T Sy2fp -2
k+1
(-1 Sy+ e+l T Sy2fa -1
_ k+1 1+ k .
= (D" =D H s+ (D=1 X (5.2)
where
Sy+2 U Sy+ fore1 Sy+fuer+l T Sy+2p0-1
. . . Sy42 ‘e Syt
X = : - : = (_1)f2k+1—2 Y Y4 fore
Sy+fuet=1 """ Sy+2fo1-3
Sy+fuer+l 7T Sy+2f-1 Sy+fuer=1 777 Sy+2fp1-3

Since y € E}, by Lemma 2.6 and Theorem 2.5(ii), we see

(sy+f2k+1+1 T Sy+2f2k+1_1) = (Sy+1 o sy+f2k+1—1)
and X = (=1)4172H, ., ;, ;. Then the result follows from Eq (5.2) and Lemma 2.10. m

Now We are able to give the exact value of the Hanker determinant on the upper right corner of Uy,
and hence we know all the determinants on the boundary of Uy .

Theorem 5.3. (Upper right corner of Uy ;) Let k > 1. Then

_ et S
HkaTH‘H»kaB_l_( D 2
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Proof. We can check directly that the result holds for k¥ = 1,2. Now suppose k > 3. Let i =

Hf%, 1 fores Then

(k42— 1J(f2k+2 2)

hy = (=1)V22=Dk(_1) (by Lemma 4.6(i))

1
25— ok

f2A+2

- ( 1) Hf2k+1

— ( 1) 2k+2

Lfu (by Lemma 2.10 and Lemma 4.2(i1))

( 1)* (H_fz%”’ﬂk_1 - Hfz"T*'H,ka—l)' (by Lemma 5.1)

Applying Lemma 4.6(i) for k — 1* and r = f5;_»,

Souk=2(f; 1
_( 1)f2k (k- 1)( DMH@ |

+1, forr1—1
fok—2-1 2

=D (by Lemma 2.10)

Hf2k+l +1 f

Applying Lemma 4.10(1) for k — 1 and r = fy_»,

(fok—2— 1)(/2k 2-2)

b
2Ly pra+ 1, fare

HkaH _( 1)(f2k =) (k- 1)( 1)

+2, fox—
Sok— 2

(by Lemma 2.10)

- ( 1) Hf2A+1

+fk-2+1, far-1

k-1
(H&k” +fok-2+2, for-1-1 + H&]‘“ +fak-2+1, for-1— 1) (by Lemma 5.2)
k-1 (hk ) + Hf2k+1 at ] fout 1) (by Lemma 4.6(iii))
ey — i) (by Lemma 4.6(i) and Lemma 2.10)
Combing previous equations, we have
2k+2
hk = ( 1) ( l)k(Haq fzk+%+2,fzk—1 - Hdl—f2k+3+1,f2k—1)
= (D DD D s — 2)
= ]’lk_z - 2hk_1. (by Lemma 210)
The initial values are #; = 2, h, = —5. The result follows from the recurrence relation of 4; and its
initial values. O

Corollary 5.4. (Lower left corner of V) Forall k > 1,

B rp 20240 fop
Hpy, = (_1) 2
3 S+l for 2

Proof. By Proposition 4.5,

(k=1) _ f21<+1 (k) _ forss
3

“We need to mention that @;’s depend also on k. For example, and a;
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H f2k+1

=H
+ k3 +1, for M_ﬁk fok

Gk~ 1)(f2k+2 2)

= (-1 PRy Blet 41y (by Lemma 4.6(i))
= (- 1)f2k+2 H At 1 fy 11 (by Lemma 2.10)
= (1T % (by Theorem 5.3)
i
Corollary 5.5. (Lower left corner of T ,) Forallk > 1, H DU s o fore
Proof. From Lemma 5.2, we have
Hf2k+3 el = D' (Hf2k+3 A S Hf2k+3 +fort L forr1 1 (5.3)

Note that H faa is on the upper left corner of U;_;,. By Lemma 4.6(ii1),

+for+2, farr1 -1

H fzkn =H f2k 1

+ 242, farr1 -1 +fora3+ 1 fore1=1"

According to Proposition 4.5 and Lemma 4.6, the determinants on the upper left corner of U;_;; and

Uy-1, are equal. Namely, H By -1 =H UL f -1 Therefore,
Hoa gy ot = Himergy g0 (54)
It follows from Lemma 4.6(i) and Lemma 2.10 that
_ 2 ok f2k<2f2A D
Hf2k+3+f2k+1 Jakr1=1 = DD DhL 41, frrz-1
= Hf2k+]+l forsz— 1° (5‘5)
Using Eq (5.3), Eq (5.4) and Eq (5.5), we have
HJZHS +fort+ 1, farr = (_1) (Hhk L1, fors1 -1 H&k“ +1, fok+3— 1)
= (-1 (( l)kuk - - (—l)k“—fz;l) (by Theorem 5.3)
= for-
O
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6. Proof of Theorem 1.1, 1.2 and 1.3

Proof of Theorem 1.1. Suppose (m,n) € U, for some i. Then @; — fys2» < n+m < @, and m =
- f2k+2 +1—-n+rwhere0 <r< f2k+2-
Case 1: n = f5;,3 — 1. Applying Lemma 4.6(i), Proposition 4.5 and then Lemma 4.6(i) again, we

have

f2k 1
Ha[—f2k+3+17f2k+3—1 = Ha’l_f2k+3+lvf2k+3_l = (_1)k+lT+' (61)

where the last equality follows from Theorem 5.3. Since r = @; —m —n = fz"” — @, (m + n), by

Lemma 4.6(ii1),

HmJl = H(Yi_f2k+4+2+rvf2k+3—1

= (_1)rHCh—f2k+3+l Szl

f2k+5

=1 P ](m+n)Haz—f2k+z+1 Jokr3—1
Pk+s _ f 2k+1

— _1 k+1 _1 5> =y (m+n) J 2641

D" (=D >
where the last equality follows from Eq (6.1).
Case 2: n = f5;. By Proposition 4.5, we have
Hmﬂ = o —fy, fa
= (D)™ (=1)"7 Hyy—pyst frret (by Lemma 4.6(iii))

™t fore
2

= (-D"'(-D (by Theorem 5.3)

where £ = fo.3 — 1 — fo is even by Lemma 2.10.
Case 3: for <n < fuz— 1. lf m+n = q; (or @; — fors2 + 1), then applying Lemma 4.6(i) (or Lemma
4.6(i1)) and then Eq (6.1), we have

[({' I)

mn = ( 1)[](( 1) a[_f2k+3+1 oz —1
= (=1%*(=1 T* - k+1@
D7D (=D >

where € = for3—1—n. lf @, — foroo + 1 <m+n < a@;, then Lemma 4.1 yields H,,,, = 0. O

Proof of Theorem 1.2. Suppose (m,n) € V; for some i. Then8; < n+m < B; + fors1-
Case 1: n = fo,» — 1. By Lemma 4.8(iii) & (i), we have

Hmn = Hﬂ'v—fzk+|+2 Soksa—1

Dok 1=Dk+1

= (- 1)(f2k+l l)k( 1)7Hﬁ:-+1,f2k' (6.2)
According to Proposition 4.5(1) and Corollary 5.4,

Lsarl f 2k+1

- (6.3)

k
Hpt gy = Hpor gy = (D77
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The result follows from Eq (6.2) and Eq (6.3).

Case 2: n = f5. By Proposition 4.5, H,,, = H,, -y, .- Then the result follows from Theorem
1.1(i1).

Case3: for <n < foyro— 1. f m+n=p0;+1(or B; + foxr+1), then by Lemma 4.8(i) (or Lemma
4.8(i1)), we have

(f2k+2‘1‘”)2(f2k+2‘2‘”) f2k+ 1
2
IfB:i+1<m+n<pB;+ fors1, then Lemma 4.1 shows H,,,, = 0. |

H,,, = —(=1)Vae2-mD 1y

Proof of Theorem 1.3. Suppose (m,n) € Ty; for some i. Theny;, — for <n+m < y;.
Case 1: n = f51,o — 1. By Lemma 4.10(ii) & (i),

Hm,n = H)’i_f2k+3+2»f2k+2_1
S~ o= D=2
= (_1)(j2k ) (_1) 2 H)’i*fzk+2+1,f2k+1

-1

= (_1)TH71_f2k+2+1,f2k+1‘ (64)

where the last equality follows from Lemma 2.10(i). Using Proposition 4.5(ii) and Corollary 5.5,

H)’i—fzk+2+1,f2k+1 = Ly~ fopn+1, frur = f2k- (65)

The result follows from Eq (6.4) and Eq (6.5).
Case 2: n = fy. Write m = y; — foo + r with 1 < r < for. By Proposition 4.5(ii) and Corollary
5.5,

HmJl = (_1)r+1H72—.f2k+2+1,f2k+1 = (_1)r+1f2k'
Note thaty; =m+n + fy —rand 1 < r < fy. Consequently,

f 2k+3
2

=Quy) =Om+n+ for —r)=Ou(m+n) + for —r

which gives r = @ (m + n) — fsz+1 Then the result follows.
Case3: foy <n< fyp—1. lfm+n=1vy — for +1 (orvy;), then by Lemma 4.10(i) (or Lemma
4.10(i1)),

(k2= 1-mfag+2-2-1) i1
2

D7 - fa
Ify;— fox + 1 <m+n <y, then Lemma 4.1 yields H,,,, = 0. O

H,, = (_1)(fzk+2—1—n)k(_ D

7. Conclusions

In this paper, we study the Hankel determinants H,,, of the Sturmian sequence s = 7(1). In
Theorem 1.1, 1.2 and 1.3, we give the closed form of the Hankel determinants H,,,, for all m > 0 and
n > 1. To extend the results to other Sturmian sequences, the difficulty is to locate the parallelograms
that are composed by (m, n)’s such that H,,,, = 0. This will need further effort.
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