Research article

Hankel determinants of a Sturmian sequence

  • Received: 05 September 2021 Revised: 09 December 2021 Accepted: 13 December 2021 Published: 20 December 2021
  • MSC : 11B75, 11C20

  • Let $ \tau $ be the substitution $ 1\to 101 $ and $ 0\to 1 $ on the alphabet $ \{0, 1\} $. The fixed point of $ \tau $ obtained starting from 1, denoted by $ {\bf{s}} $, is a Sturmian sequence. We first give a characterization of $ {\bf{s}} $ using $ f $-representation. Then we show that the distribution of zeros in the determinants induces a partition of integer lattices in the first quadrant. Combining those properties, we give the explicit values of the Hankel determinants $ H_{m, n} $ of $ {\bf{s}} $ for all $ m\ge 0 $ and $ n\ge 1 $.

    Citation: Haocong Song, Wen Wu. Hankel determinants of a Sturmian sequence[J]. AIMS Mathematics, 2022, 7(3): 4233-4265. doi: 10.3934/math.2022235

    Related Papers:

  • Let $ \tau $ be the substitution $ 1\to 101 $ and $ 0\to 1 $ on the alphabet $ \{0, 1\} $. The fixed point of $ \tau $ obtained starting from 1, denoted by $ {\bf{s}} $, is a Sturmian sequence. We first give a characterization of $ {\bf{s}} $ using $ f $-representation. Then we show that the distribution of zeros in the determinants induces a partition of integer lattices in the first quadrant. Combining those properties, we give the explicit values of the Hankel determinants $ H_{m, n} $ of $ {\bf{s}} $ for all $ m\ge 0 $ and $ n\ge 1 $.



    加载中


    [1] J. P. Allouche, J. Peyrière, Z. X. Wen, Z. Y. Wen, Hankel determinants of the Thue-Morse sequence, Ann. Inst. Fourier, Grenoble, 48 (1998), 1–27.
    [2] J. P. Allouche, J. Shallit, Automatic sequences: Theory and Applications, Cambridge University Press, 2003.
    [3] Y. Bugeaud, On the rational approximation to the Thue-Morse-Mahler numbers, Ann. Inst. Fourier, 61 (2011), 2065–2076. https://doi.org/10.5802/aif.2666 doi: 10.5802/aif.2666
    [4] Y. Bugeaud, G. N. Han, Z. Y. Wen, J. Y. Yao, Hankel Determinants, Padé Approximations, and Irrationality Exponents, Int. Math. Res. Notices (IMRN), 5 (2016), 1467–1496.
    [5] M. Coons, On the rational approximation of the sum of the reciprocals of the Fermat numbers, Ramanujan J., 30 (2013), 39–65. https://doi.org/10.1007/s11139-012-9410-x doi: 10.1007/s11139-012-9410-x
    [6] H. Fu, G. N. Han, Computer assisted proof for Apwenian sequences, Proc. ISSAC 2016 Conference, Waterloo, Ontario, Canada, 2016.
    [7] R. J. Fokkink, C. Kraaikamp, J. Shallit. Hankel matrices for the period-doubling sequence. Indagationes Mathematicae, 28(1) (2017), 108-119. https://doi.org/10.1016/j.indag.2016.11.008 doi: 10.1016/j.indag.2016.11.008
    [8] Y. J. Guo, G. N. Han, W. Wu. Criterions for apwenian sequences, Adv. Math., 389 (2021), 107899. https://doi.org/10.1016/j.aim.2021.107899 doi: 10.1016/j.aim.2021.107899
    [9] Y. J. Guo, Z. X. Wen, W. Wu, On the irrationality exponent of the regular paperfolding numbers, Linear Algebra Appl, , 446 (2014), 237–264. https://doi.org/10.1016/j.laa.2013.12.023 doi: 10.1016/j.laa.2013.12.023
    [10] G. N. Han, Hankel continued fraction and its applications, Adv. Math., 303 (2016), 295–321.
    [11] T. Kamae, J. Tamura, Z. Y. Wen, Hankel determinants for the Fibonacci word and Padé approximation, Acta Arithmetica, 89 (1999), 123–161. https://doi.org/10.4064/aa-89-2-123-161 doi: 10.4064/aa-89-2-123-161
    [12] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, (2009). Available from: https://oeis.org/.
    [13] J. Tamura, Padé approximation for the infinite words generated by certain substitutions and Hankel determinants, Number Theory and Its Applications, Kluwer Academic Publishers. (1990), 309–346.
    [14] B. Tan, Z. Y. Wen, Invertible substitutions and Sturmian sequences, European J. Combin., 24 (2003), 983–1002. https://doi.org/10.1016/S0195-6698(03)00105-7 doi: 10.1016/S0195-6698(03)00105-7
    [15] K. Väänänen, On rational approximations of certain Mahler functions with a connection to the Thue-Morse sequence, Int. J. Number Theory, 11 (2015), 487–493. https://doi.org/10.1142/S1793042115500244 doi: 10.1142/S1793042115500244
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1747) PDF downloads(61) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog