Research article

Additive and Fréchet functional equations on restricted domains with some characterizations of inner product spaces

  • Received: 16 September 2021 Accepted: 11 November 2021 Published: 30 November 2021
  • MSC : 39B82, 39B52, 39B62, 46C15

  • In this paper, we investigate the Hyers-Ulam stability of additive and Fréchet functional equations on restricted domains. We improve the bounds and thus the results obtained by S. M. Jung and J. M. Rassias. As a consequence, we obtain asymptotic behaviors of functional equations of different types. One of the objectives of this paper is to bring out the involvement of functional equations in various characterizations of inner product spaces.

    Citation: Choonkil Park, Abbas Najati, Batool Noori, Mohammad B. Moghimi. Additive and Fréchet functional equations on restricted domains with some characterizations of inner product spaces[J]. AIMS Mathematics, 2022, 7(3): 3379-3394. doi: 10.3934/math.2022188

    Related Papers:

  • In this paper, we investigate the Hyers-Ulam stability of additive and Fréchet functional equations on restricted domains. We improve the bounds and thus the results obtained by S. M. Jung and J. M. Rassias. As a consequence, we obtain asymptotic behaviors of functional equations of different types. One of the objectives of this paper is to bring out the involvement of functional equations in various characterizations of inner product spaces.



    加载中


    [1] C. Alsina, J. Sikorska, M. Santos Tomás, Norm derivatives and characterizations of inner product spaces, World Scientific, Hackensack, 2010.
    [2] D. Amir, Characterizations of inner product spaces, Birkhäuser, Basel, 1986.
    [3] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64–66. doi: 10.2969/jmsj/00210064. doi: 10.2969/jmsj/00210064
    [4] J. H. Bae, B. Noori, M. B. Moghimi, A. Najati, Inner product spaces and quadratic functional equations, Adv. Differ. Equ., (2021). doi: 10.1186/s13662-021-03307-x.
    [5] S. Czerwik, Functional equations and inequalities in several variables, World Scientific Publishing Co., Inc., River Edge, NJ, 2002.
    [6] G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math., 50 (1995), 143–190. doi: 10.1007/BF01831117. doi: 10.1007/BF01831117
    [7] M. Fréchet, Une définition fonctionelle des polynômes, Nouv. Ann., 49 (1909), 145–162.
    [8] M. Fréchet, Sur la définition axiomatique d'une classe d'espaces vectoriels distanciés applicables vectoriellement sur l'espace de Hilbert, Ann. Math., 36 (1935), 705–718. doi: 10.2307/1968652. doi: 10.2307/1968652
    [9] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431–436. doi: 10.1006/jmaa.1994.1211. doi: 10.1006/jmaa.1994.1211
    [10] H. Gharib, M. B. Moghimi, A. Najati, J. H. Bae, Asymptotic stability of the Pexider-Cauchy functional equation in non-Archimedean spaces, Mathematics, 9 (2021), 2197. doi: 10.3390/math9182197. doi: 10.3390/math9182197
    [11] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222–224. doi: 10.1073/pnas.27.4.222. doi: 10.1073/pnas.27.4.222
    [12] D. H. Hyers, G. Isac, Th. M. Rassias, Stability of functional equations in several variables, Birkhäuser, Boston, 1998.
    [13] S. M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl., 222 (1998), 126–137. doi: 10.1006/jmaa.1998.5916. doi: 10.1006/jmaa.1998.5916
    [14] S. M. Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Am. Math. Soc., 126 (1998), 3137–3143. doi: 10.1090/S0002-9939-98-04680-2. doi: 10.1090/S0002-9939-98-04680-2
    [15] S. M. Jung, Local stability of the additive functional equation, Glas. Mat. Ser. III, 38 (2003), 45–55.
    [16] S. M. Jung, Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer, New York, Dordrecht, Heidelberg, London, 2011.
    [17] Pl. Kannappan, Functional equations and inequalities with applications, Springer, New York, 2009.
    [18] Z. Kominek, On a local stability of the Jensen functional equation, Demonstratio Math., 22 (1989), 499–507. doi: 10.1515/dema-1989-0220. doi: 10.1515/dema-1989-0220
    [19] Q. Liu, S. Zhuang, Y. Li, Additive double $\rho$-functional inequalities in $\beta$-homogeneous $F$-spaces, J. Math. Inequal., 15 (2021), 605–613. doi: 10.7153/jmi-2021-15-44. doi: 10.7153/jmi-2021-15-44
    [20] L. Losonczi, On the stability of Hosszús' functional equation, Results Math., 29 (1996), 305–310. doi: 10.1007/BF03322226. doi: 10.1007/BF03322226
    [21] M. B. Moghimi, A. Najati, C. Park, A functional inequality in restricted domains of Banach modules, Adv. Differ. Equ., (2009). doi: 10.1155/2009/973709.
    [22] D. Molaei, A. Najati, Hyperstability of the general linear equation on restricted domains, Acta Math. Hungar., 149 (2016), 238–253. doi: 10.1007/s10474-016-0609-y. doi: 10.1007/s10474-016-0609-y
    [23] A. Najati, S. M. Jung, Approximately quadratic mappings on restricted domains, J. Inequal. Appl., (2010). doi: 10.1155/2010/503458.
    [24] A. Najati, Th. M. Rassias, Stability of the Pexiderized Cauchy and Jensen's equations on restricted domains, Commun. Math. Anal., 8 (2010), 125–135.
    [25] A. Najati, G. Zamani Eskandani, A fixed point method to the generalized stability of a mixed additive and quadratic functional equation in Banach modules, J. Differ. Equ. Appl., 16 (2010), 773–788. doi: 10.1080/10236190802448609. doi: 10.1080/10236190802448609
    [26] C. Park, B. Noori, M. B. Moghimi, A. Najati, J. M. Rassias, Local stability of mappings on multi-normed spaces, Adv. Differ. Equ., (2020). doi: 10.1186/s13662-020-02858-9.
    [27] C. Park, K. Tamilvanan, B. Noori, M. B. Moghimi, A. Najati, Fuzzy normed spaces and stability of a generalized quadratic functional equation, AIMS Math., 5 (2020), 7161–7174. doi: 10.3934/math.2020458. doi: 10.3934/math.2020458
    [28] J. Senasukh, S. Saejung, On the hyperstability of the Drygas functional equation on a restricted domain, Bull. Aust. Math. Soc., 102 (2020), 126–137. doi: 10.1017/S0004972719001096. doi: 10.1017/S0004972719001096
    [29] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 72 (1978), 297–300. doi: 10.1090/S0002-9939-1978-0507327-1. doi: 10.1090/S0002-9939-1978-0507327-1
    [30] J. M. Rassias, On the Ulam stability of mixed type mappings on restricted domains, J. Math. Anal. Appl., 276 (2002), 747–762. doi: 10.1016/S0022-247X(02)00439-0. doi: 10.1016/S0022-247X(02)00439-0
    [31] J. M. Rassias, M. J. Rassias, On the Ulam stability of Jensen and Jensen type mappings on restricted domains, J. Math. Anal. Appl., 281 (2003), 516–524. doi: 10.1016/S0022-247X(03)00136-7. doi: 10.1016/S0022-247X(03)00136-7
    [32] F. Skof, Proprietá locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113–129. doi: 10.1007/BF02924890. doi: 10.1007/BF02924890
    [33] S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1960.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1762) PDF downloads(63) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog