Research article Special Issues

Stability in a Ross epidemic model with road diffusion

  • Received: 05 October 2021 Accepted: 15 November 2021 Published: 19 November 2021
  • MSC : 35B35, 35K60

  • Reaction-diffusion equations have been used to describe the dynamical behavior of epidemic models, where the spreading of infectious disease has the same speed in every direction. A natural question is how to describe the dynamical system when the spreading of infectious disease is directed diffusion. We introduce the road diffusion into a Ross epidemic model which describes the spread of infected Mosquitoes and humans. With the comparison principle the system is proved to have a unique global solution. By the approach of upper and lower solutions, we show that the disease-free equilibrium is asymptotically stable if the basic reproduction number is lower than 1 while the endemic equilibrium asymptotically stable if the basic reproduction number is greater than 1.

    Citation: Xiaomei Bao, Canrong Tian. Stability in a Ross epidemic model with road diffusion[J]. AIMS Mathematics, 2022, 7(2): 2840-2857. doi: 10.3934/math.2022157

    Related Papers:

  • Reaction-diffusion equations have been used to describe the dynamical behavior of epidemic models, where the spreading of infectious disease has the same speed in every direction. A natural question is how to describe the dynamical system when the spreading of infectious disease is directed diffusion. We introduce the road diffusion into a Ross epidemic model which describes the spread of infected Mosquitoes and humans. With the comparison principle the system is proved to have a unique global solution. By the approach of upper and lower solutions, we show that the disease-free equilibrium is asymptotically stable if the basic reproduction number is lower than 1 while the endemic equilibrium asymptotically stable if the basic reproduction number is greater than 1.



    加载中


    [1] P. Song, Y. Lou, Y. Xiao, A spatial SEIRS reaction-diffusion model in heterogeneous environment, J. Differ. Equ., 267 (2019), 5084–5114. doi: 10.1016/j.jde.2019.05.022. doi: 10.1016/j.jde.2019.05.022
    [2] B. E. Peacock, J. P. Smith, P. G. Gregory, T. M. Loyless, M. J. Jr, P. R. Simmonds, et al., Aedes albopictus in Florida, J. Am. Mosquito Contr., 4 (1988), 362–365. doi: 10.2307/3495451. doi: 10.2307/3495451
    [3] G. F. O'Meara, L. F. Evans, A. D. Gettman, J. P. Cuda, Spread of Aedes albopictus and decline of Ae. aegypti (Diptera: Culicidae) in Florida, J. Med. Entomol., 32 (1995), 554–562. doi: 10.1093/jmedent/32.4.554. doi: 10.1093/jmedent/32.4.554
    [4] W. A. Hawley, P. Reiter, R. Copeland, C. B. Pumpuni, G. B. Craig, Aedes albopictus in North America: Probable introduction in used tires from Northern Asia, Science, 236 (1987), 1114–1116. doi: 10.1126/science.3576225. doi: 10.1126/science.3576225
    [5] M. Enserink, Entomology: A mosquito goes global, Science, 320 (2008), 864–866. doi: 10.1126/science.320.5878.864. doi: 10.1126/science.320.5878.864
    [6] M. B. Hahn, L. Eisen, J. Mcallister, H. M. Savage, J. P. Mutebi, R. J. Eisen, Updated reported distribution of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in the United States, 1995–2016, J. Med. Entomol., 54 (2017), 1420–1424. doi: 10.1093/jme/tjx088. doi: 10.1093/jme/tjx088
    [7] I. Rochlin, D. V. Ninivaggi, M. L. Hutchison, Climate change and range expansion of the Asian tiger mosquito (Aedes albopictus) in Northeastern USA: Implications for public health practitioners, Plos One, 8 (2013). doi: 10.1371/journal.pone.0060874. doi: 10.1371/journal.pone.0060874
    [8] C. Parker, D. Ramirez, C. R. Connelly, State-wide survey of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Florida, J. Vector Ecol., 44 (2019), 210–215. doi: 10.1111/jvec.12351. doi: 10.1111/jvec.12351
    [9] K. L. Bennett, C. G. Martínez, A. Almanza, J. R. Rovira, J. R. Loaiza, High infestation of invasive Aedes mosquitoes in used tires along the local transport network of Panama, Parasite. Vector., 12 (2019), 264. doi: 10.1186/s13071-019-3522-8. doi: 10.1186/s13071-019-3522-8
    [10] H. Berestycki, J. M. Roquejoffre, L. Rossi, The influence of a line with fast diffusion on Fisher-KPP propagation, J. Math. Biol., 66 (2013), 743–766. doi: 10.1007/s00285-012-0604-z. doi: 10.1007/s00285-012-0604-z
    [11] H. Berestycki, J. M. Roquejoffre, L. Rossi, Fisher-KPP propagation in the presence of a line: Further effects, Nonlinearity, 26 (2013), 2623–2640. doi: 10.1088/0951-7715/26/9/2623. doi: 10.1088/0951-7715/26/9/2623
    [12] H. Berestycki, R. Monneau, J. Scheinkman, A non-local free boundary problem arising in a theory of financial bubbles, Philos. T. R. Soc. A, 372 (2014), 20130404. doi: 10.1098/rsta.2013.0404. doi: 10.1098/rsta.2013.0404
    [13] L. Allen, B. Bolker, Y. Lou, A. Nevai, Asymptotic profiles of the steady states for an SIS epidemic disease patch model, SIAM J. Appl. Math., 67 (2007), 1283–1309. doi: 10.1137/060672522. doi: 10.1137/060672522
    [14] L. Allen, B. Bolker, Y. Lou, A. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Cont. Dyn. Syst., 21 (2008), 1–20. doi: 10.1016/S0927-6505(02)00196-2. doi: 10.1016/S0927-6505(02)00196-2
    [15] F. Yang, W. Li, S. Ruan, Dynamics of a nonlocal dispersal SIS epidemic model with Neumann boundary conditions, J. Differ. Equ., 267 (2019), 2011–2051. doi: 10.1016/j.jde.2019.03.001. doi: 10.1016/j.jde.2019.03.001
    [16] Z. Lin, H. Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary, J. Math. Biol., 75 (2017), 1381–1409. doi: 10.1007/s00285-017-1124-7. doi: 10.1007/s00285-017-1124-7
    [17] H. Li, R. Peng, Z. Wang, On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death effect: Analysis, simulations, and comparison with other mechanisms, SIAM J. Appl. Math., 78 (2018), 2129–2153. doi: 10.1137/18M1167863. doi: 10.1137/18M1167863
    [18] C. Lei, F. Li, J. Liu, Theoretical analysis on a diffusive SIR epidemic model with nonlinear incidence in a heterogeneous environment, Discrete Cont. Dyn-B., 23 (2018), 4499–4517. doi: 10.3934/dcdsb.2018173. doi: 10.3934/dcdsb.2018173
    [19] K. Hattaf, A new generalized definition of fractional derivative with non-singular kernel, Computation, 8 (2020), 49. doi: 10.3390/computation8020049. doi: 10.3390/computation8020049
    [20] A. A. Lashari, S. Aly, K. Hattaf, G. Zaman, I. H. Jung, X. Z. Li, Presentation of malaria epidemics using multiple optimal controls, J. Appl. Math., 2012 (2012). doi: 10.1155/2012/946504. doi: 10.1155/2012/946504
    [21] K. Hattaf, A. A. Lashari, Y. Louartassi, N. Yousfi, A delayed SIR epidemic model with a general incidence rate, Electron. J. Qual. Theo., 3 (2013), 1–9. doi: 10.14232/ejqtde.2013.1.3. doi: 10.14232/ejqtde.2013.1.3
    [22] A. Bhadra, A. Mukherjee, K. Sarkar, Impact of population density on Covid-19 infected and mortality rate in India, Model. Earth Syst. Env., 7 (2020), 1–7. doi: 10.1101/2020.08.21.20179416. doi: 10.1101/2020.08.21.20179416
    [23] O. Adedire, J. N. Ndam, A model of dual latency compartments for the transmission dynamics of COVID-19 in Oyo state, Nigeria, Eng. Appl. Sci. Lett., 4 (2021), 1–13. doi: 10.30538/psrp-easl2021.0056. doi: 10.30538/psrp-easl2021.0056
    [24] M. Al-Raeei, The basic reproduction number of the new coronavirus pandemic with mortality for India, the Syrian Arab Republic, the United States, Yemen, China, France, Nigeria and Russia with different rate of cases, Clin. Epidemiol. Glob., 9 (2021), 147–149. doi: 10.1016/j.cegh.2020.08.005. doi: 10.1016/j.cegh.2020.08.005
    [25] H. L. Smith, Monotone Dynamical Systems: An introduction to the theory of competitive and cooperative systems, Amer. Math. Soc., 1995. doi: 10.1090/surv/041.
    [26] C. V. Pao, Nonlinear parabolic and elliptic equations, New York: Plenum, 1992. doi: 10.1007/978-1-4615-3034-3.
    [27] J. D. Murray, Mathematical biology Ⅱ: Spatial models and biomedical applications, Berlin: Springer-Verlag, 2003. doi: 10.1023/A:1025805822749.
    [28] S. Ruan, Spatiotemporal epidemic models for rabies among animals, Infect. Dis. Model., 2 (2017), 277–287. doi: 10.1016/j.idm.2017.06.001. doi: 10.1016/j.idm.2017.06.001
    [29] Z. Ma, J. Li, Dynamical modeling and analysis of epidemics, London: World Science Publishing, 2009. doi: 10.1007/978-1-4615-3034-3.
    [30] P. Agarwal, Juan J. Nieto, M. Ruzhansky, Delfim F. M. Torres, Analysis of infectious disease problems (Covid-19) and their global impact, Singapore: Springer, 2021. doi: 10.1007/978-981-16-2450-6.
    [31] T. Feuring, A. Tenhagen, Stability analysis of neural networks, In: Proceedings of International Conference on Neural Networks, 1997. doi: 10.1109/ICNN.1997.611716.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1817) PDF downloads(138) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog