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Abstract: Reaction-diffusion equations have been used to describe the dynamical behavior of
epidemic models, where the spreading of infectious disease has the same speed in every direction.
A natural question is how to describe the dynamical system when the spreading of infectious disease
is directed diffusion. We introduce the road diffusion into a Ross epidemic model which describes the
spread of infected Mosquitoes and humans. With the comparison principle the system is proved to have
a unique global solution. By the approach of upper and lower solutions, we show that the disease-free
equilibrium is asymptotically stable if the basic reproduction number is lower than 1 while the endemic
equilibrium asymptotically stable if the basic reproduction number is greater than 1.
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1. Introduction

Mosquito was firstly discovered a transmission vector of Malaria by Ronald Ross in 1898. Ross was
also the first to use differential equation to study epidemiology. In order to build an intra-host epidemic
model, the mosquito population is divided into two compartments: healthy mosquitoes (susceptible
mosquitoes) and infected mosquitoes, while the human population is divided into two compartments:
susceptible humans and infected humans. He constructed a two-component system composed with the
infected humans u and the infectious mosquitoes v as the following form: du

dt = mab1v(1 − u) − γ1u,
dv
dt = ab2(1 − v)u − γ2v.

(1.1)

He proposed out the threshold (the predecessor of basic reproduction number) to determine the
asymptotic stability of the disease-free equilibrium and endemic equilibrium.
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It is assumed that the densities of mosquitoes and humans are homogeneous in the above model.
The heterogeneous spatial distribution has formed a reasonable basis for studying insect dispersal
(Lewis [1]). For example, in 1986 Aedes albopictus was found for the first time in northern counties
in Florida (Peacock et al. [2]). Then it kept spreading southward, slowly but steadily, and had spread
all over the 67 counties (O’Meara et al. [3]) in six years’ time. By 2008, Aedes albopictus had spread
over to 36 states and was still continuing its expansion (Hawley et al. [4], Enserink [5], and Hahnet
et al. [6]). In 2013, Rochlin et al. [7] predicted that, especially in urban areas, in the next 20 years,
Aedes albopictus population, will be over three times more. A recent survey on the current distribution
of Aedes albopictus (Parker et al. [8]) shows that Aedes albopictus have been tracked in 56 of all 67
Florida counties. The mosquito of Aedes albopictus had also been reported to spread along roads.
Bennett et al. [9] found that the infestation rate of Aedes albopictus was high in garages trading used
tires along the highways, and this road provided a channel for fast dispersal across Panama.

Considering the effect of highways on the spreading of mosquito, Berestycki, Roquejoffre and
Rossi [10] introduced the road diffusion into a reaction-diffusion system. They proposed the model
where a two-dimensional environment contains a “line” inside which fast diffusion occurs, while
reproduction and the usual diffusion occur only outside. Once “plane” is a field and “line” is a road,
this system is a combination of the density of the field with that of the road, between which exists a
population exchange satisfied Fickian conservation law. Berestycki et al. have studied the qualitative
properties of road-field system (see [11, 12]). Since the fact the motion of mosquitoes and humans
obey the Gaussian distribution, we take the effect of the dispersal into account by using a Laplacian
diffusion. Moreover, we study the spread of mosquitoes along the highways with the help of the road
diffusion. Thus we improve Ross epidemic model as the form:

∂tu − d1∆u = mab1v(1 − u) − γ1u, (x, y) ∈ R × R+,

∂tv − d2∆v = ab2(1 − v)u − γ2v, (x, y) ∈ R × R+,

∂tw − D∂xxw = νv|y=0 − µw, x ∈ R,
−d2∂yv|y=0 = µw − νv|y=0, x ∈ R,
∂yu|y=0 = 0, x ∈ R.

(1.2)

where u(x, y, t) represents the density of the infected humans, v(x, y, t) represents the density of the
infected mosquitoes, and w(x, t) represents the density of the infected humans living on the road.
Meanwhile, R × R+ and R represent field and road respectively. The first equation accounts for the
infected humans dynamic on the field, the second and third for the infected mosquitoes dynamic in the
field and road respectively, and the fourth for the exchanges between the field and the road. d1, d2 and
D denote the diffusion rates. ν represents the ratio moving from field to road, µ for the ratio moving
from road to field. m is the rate of the bitten mosquitoes over the whole mosquito community. a is
the number of the humans bitted by a mosquito per unit of time. b1 is the probability of a susceptible
hunman becoming infectious after a bite of an infected mosquito. b2 is the probability of a susceptible
mosquito becoming infectious after it bites a infectd human. γ1 and γ2 are the infection cycles of the
mosquitos and humans respectively. Mosquito and human infectious individual remains infectious on
a mean time 1

γ1
and 1

γ2
respectively. Epidemic models without road diffusion have been applied to

study the spreading of infectious disease through the investigation of asymptotic behavior, seeing for
example Allen et al. [13, 14], Yang et al. [15], Lin and Zhu [16], Li et al. [17], Lei et al. [18], and the
references therein. Besides the classical Laplacian diffusion in (1.2), the new generalized fractional
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derivative has been presented in [19–21] to study the memory effect of epidemic model dynamics.
Recently, some important real examples of epidemic model dynamics have been proposed in [22–24].

This paper is mainly aimed to study the existence and stability of the solutions to system (1.2).
Section 2 proves the global existence and uniqueness of solutions to the road diffusion problem (1.2).
Section 3 investigates the asymptotic stabilities of the disease-free equilibrium and endemic
equilibrium based on the theory of the basic reproduction number. Section 4 gives out some discussions
and conclusions.

2. Existence and uniqueness

We use the approach of upper and lower solutions to study the existence and uniqueness of solutions.

Definition 2.1. Suppose that ũ := (ũ, ṽ, w̃) and û := (û, v̂, ŵ) is continuous for t ∈ [0,∞). û is called a
lower solution of system (1.2) if it satisfies (1.2) with the = signs replaced by ≤ signs. Similarly, ũ is
called a upper solution satisfies (1.2) with the = signs replaced by ≥ signs.

In order to show the uniqueness, we need the following comparison principle.

Theorem 2.1. (Comparison principle) If nonnegative (ũ, ṽ, w̃) and (û, v̂, ŵ) are respectively a upper
solution and lower solution of system (1.2) satisfying û ≤ ũ ≤ 1, v̂ ≤ ṽ ≤ 1, ŵ ≤ w̃ ≤ 1 at t = 0. Then
û ≤ ũ, v̂ ≤ ṽ, ŵ ≤ w̃ for all t > 0.

Proof. For K > 0, we define functions (u, v,w) = (û, v̂, ŵ)e−Kt, (u, v,w) = (ũ, ṽ, w̃)e−Kt. Let χ : R→ R
be a nonnegative smooth function satisfying:

χ(x) = 0 in x ∈ [0, 2x0], χ′′ ≤ min{
1
2
,

1
2d1

,
1

2d2
,

1
D
} in R, (2.1)

where χ′′ is the second derivative of χ, x0 = max{x1, x2}, here x1 and x2 are determined in the
following (2.8) and (2.12).

For ε > 0, set

ǔ(x, y, t) := u(x, y, t) +
µ

ν
ε(χ(|x|) + χ(y) + t + 1),

v̌(x, y, t) := v(x, y, t) +
µ

ν
ε(χ(|x|) + χ(y) + t + 1),

w̌(x, t) := w(x, t) + ε(χ(|x|) + t + 1). (2.2)

It is easy to verify that (ǔ, v̌, w̌) is strictly above (u, v,w) at t = 0. In order to show û ≤ ũ, v̂ ≤ ṽ, ŵ ≤ w̃
for all t > 0, we need to show that u < ǔ, v < v̌,w < w̌ for all t > 0 owing to the arbitrariness of ε.
Assume by contradiction that this property is not true for all t > 0. Then,

T = sup{τ ≥ 0, u ≤ ǔ ∈ R × R+ × [0, τ], v ≤ v̌ ∈ R × R+ × [0, τ],w ≤ w̌ ∈ R × [0, τ]} ∈ (0,+∞).

According to the continuity of the functions, ǔ, v̌ and w̌ tend to +∞ as the space variable goes to
infinity, uniformly in time, implies that T > 0 and ǔ − u = 0 or v̌ − v = 0 or w̌ − w = 0 at time T .
By choosing

K = 2mab1 + 2ab2, (2.3)
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we argue differently depending on ǔ − u = 0 or v̌ − v = 0 or w̌ − w = 0 at time T .
Case 1. In the case minR(w̌ − w)(·,T ) = 0. In view of the definition of w, we have

∂tw − D∂xxw + (K + µ)w ≥ νv|y=0.

Applying (2.2) to the above inequality, we have

(∂t − D∂xx + (K + µ)) w̌ = (∂t − D∂xx + (K + µ)) w + ε
(
1 − Dχ′′(|x|) + (K + µ)(χ(|x|) + t + 1)

)
≥νv|y=0 + ε

(
1 − Dχ′′(|x|) + (K + µ)(χ(|x|) + t + 1)

)
≥νv|y=0 + ε(K + µ)(χ(|x|) + t + 1),

where the last inequality comes from (2.1).
By (2.2), it follows from the above inequality that

(∂t − D∂xx + (K + µ)) w̌ ≥ νv̌|y=0 + ε(K + µ)(χ(|x|) + t + 1) − µε(χ(|x|) + t + 1)
≥ νv̌|y=0. (2.4)

On the other hand, we have

(∂t − D∂xx + (K + µ)) w ≤ νv|y=0. (2.5)

Combining (2.4) and (2.5), for x ∈ R and t ∈ (0,T ], we have

(∂t − D∂xx + (K + µ)) (w̌ − w) ≥ νv̌|y=0 − νv|y=0 ≥ 0.

Using the parabolic strong maximum principle, we can yield that minR(w̌−w) = 0 in R× [0,T ], which
is contrary to w̌(x, 0) − w(x, 0) > 0. Thus minR(w̌ − w)(·,T ) = 0 is not true.

Case 2. In the case minR×R+(ǔ − u)(·,T ) = 0. By the definition of u and u, we have

(∂t − d1∆ + K) u ≤ e−Kt(mab1v̂(1 − û) − γ1û),
(∂t − d1∆ + K) u ≥ e−Kt(mab1ṽ(1 − ũ) − γ1ũ). (2.6)

By (2.2), it follows from (2.6) that

(∂t − d1∆ + K) ǔ = (∂t − d1∆ + K) u +
µ

ν
ε
(
1 − d1χ

′′(|x|) − d1χ
′′(y) + K(χ(|x|) + χ(y) + t + 1)

)
≥ (∂t − d1∆ + K) u +

µ

ν
εK(χ(|x|) + χ(y) + t + 1)

≥ e−Kt(mab1ṽ(1 − ũ) − γ1ũ) +
µ

ν
εK(χ(|x|) + χ(y) + t + 1),

where the second inequality is induced from (2.1).
Thus we have

(∂t − d1∆ + K) (ǔ − u) ≥
µ

ν
εK(χ(|x|) + χ(y) + t + 1)

+ e−Kt[mab1ṽ(1 − ũ) − γ1ũ − (mab1v̂(1 − û) − γ1û)],

=
µ

ν
εK(χ(|x|) + χ(y) + t + 1)

+ e−Kt(−γ1 − mab1ṽ)(ũ − û) + e−Kt(mab1 − mab1û)(ṽ − v̂),

=
µ

ν
εK(χ(|x|) + χ(y) + t + 1)

+ (−γ1 − mab1ṽ)(u − u) + (mab1 − mab1û)(v − v),
≥ (−γ1 − mab1ṽ)(ǔ − u) + (mab1 − mab1û)(v̌ − v),
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where the last inequality is due to the definition of K from (2.3).
Owing to û ≤ 1, we have

(∂t − d1∆ + K + γ1 + mab1ṽ) (ǔ − u) ≥ (mab1 − mab1û)(v̌ − v) ≥ 0, (2.7)

for (x, y) ∈ R × R+ and t ∈ (0,T ]. By applying the parabolic strong maximum principle, minR×R+(ǔ −
u)(·,T ) = 0 must be attained on the boundary of R × R+. Thus we have

(ǔ − u)(x1, 0,T ) = 0, for some x1 ∈ R. (2.8)

Moreover, we have

(ǔ − u)(x1, 0,T ) ≥ (u − u)(x1, 0,T ) = e−Kt(ũ − û)(x1, 0,T )

≥
e−Kt

ν
[∂y(ũ(x1, 0,T ) − û(x1, 0,T )) + µ(w̃(x1, 0,T ) − ŵ(x1, 0,T )]

≥
e−Kt

ν
∂y(ũ(x1, 0,T ) − û(x1, 0,T ))

=
1
ν
∂y(u(x1, 0,T ) − u(x1, 0,T ))

=
1
ν
∂y(ǔ(x1, 0,T ) − u(x1, 0,T )) > 0, (2.9)

where the last inequality is by using the Hopf lemma.
This contradiction of (2.8) and (2.9) implies that minR×R+(ǔ − u)(·,T ) = 0 is not true.
Case 3. In the case minR×R+(v̌ − v)(·,T ) = 0. Directly calculations show that

(∂t − d2∆ + K) v ≤ e−Kt(ab2(1 − v̂)û − γ2v̂),
(∂t − d2∆ + K) v ≥ e−Kt(ab2(1 − ṽ)ũ − γ2ṽ). (2.10)

By (2.2), it follows from (2.10) that

(∂t − d2∆ + K) v̌ = (∂t − d2∆ + K) v +
µ

ν
ε
(
1 − d2χ

′′(|x|) − d2χ
′′(y) + K(χ(|x|) + χ(y) + t + 1)

)
≥ (∂t − d2∆ + K) v +

µ

ν
εK(χ(|x|) + χ(y) + t + 1)

≥ e−Kt(ab2(1 − ṽ)ũ − γ2ṽ) +
µ

ν
εK(χ(|x|) + χ(y) + t + 1),

where the second inequality is induced from (2.1). Inserting (2.10) into the above inequality, we have

(∂t − d2∆ + K) (v̌ − v) ≥
µ

ν
εK(χ(|x|) + χ(y) + t + 1)

+ e−Kt[ab2(1 − ṽ)ũ − γ2ṽ − (ab2(1 − v̂)û − γ2v̂)]

=
µ

ν
εK(χ(|x|) + χ(y) + t + 1)

+ e−Kt[(−γ2 − ab2ũ)(ṽ − v̂) + (ab2 − ab2v̂)(ũ − û)]

=
µ

ν
εK(χ(|x|) + χ(y) + t + 1)
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+ [(−γ2 − ab2ũ)(v − v) + (ab2 − ab2v̂)(u − u)]
≥ (−γ2 − ab2ũ)(v̌ − v) + (ab2 − ab2v̂)(ǔ − u),

where the last inequality is because of the definition of K from (2.3).
Owing to v̂ ≤ 1, we have

(∂t − d2∆ + K + γ2 + ab2ũ) (v̌ − v) ≥ (ab2 − ab2v̂)(ǔ − u) ≥ 0, (2.11)

for (x, y) ∈ R × R+ and t ∈ (0,T ]. By applying the parabolic strong maximum principle, minR×R+(v̌ −
v)(·,T ) = 0 must be attained on the boundary of R × R+. Thus we have

(v̌ − v)(x2, 0,T ) = 0, for some x2 ∈ R. (2.12)

Using the Hopf lemma yields that

∂y(v̌ − v)|y=0(x2, 0,T ) > 0, for some x2 ∈ R. (2.13)

In view of (2.2) and (2.12), we have

(ṽ − v̂)(x2, 0,T ) = eKT (v − v)(x2, 0,T ),

= eKT (v̌ − v)(x2, 0,T ) −
µeKT

ν
ε(χ(|x2|) + T + 1). (2.14)

In view of (2.2), we have

∂y|y=0(ṽ − v̂)(x2, 0,T ) = eKT∂y|y=0(v̌ − v)(x2, 0,T ) −
µeKTε

ν
∂y|y=0(χ(|x2|) + χ(y) + T + 1),

= eKT∂y|y=0(v̌ − v)(x2, 0,T ) > 0, (2.15)

where the last inequality is because of the definition of χ in (2.1). The conclusion (2.15) contradicts to
∂yṽ|y=0 ≤ 0 ≤ ∂yv̂|y=0. Thus minR×R+(v̌ − v)(·,T ) = 0 is not true.

In the above three cases, we all reached a contradiction. This completes the proof. �

As for a given pair of coupled upper and lower solutions ũ and û, we denote

Λ := {u ∈ C(E∗) ×C(E∗) ×C(E∗∗) : û ≤ u ≤ ũ, v̂ ≤ v ≤ ṽ, ŵ ≤ w ≤ w̃}. (2.16)

where

E∗ := {(t, x, y) : t ∈ (0,∞), (x, y) ∈ R × R+}, E∗∗ := {(t, x) : t ∈ (0,∞), x ∈ R}. (2.17)

We denote the functions of system (1.2) by

f1(u, v) := mab1v(1 − u) − γ1u, f2(u, v) := ab2(1 − v)u − γ2v, g(v,w) := νv|y=0 − µw. (2.18)

We denote the linear operators of system (1.2) by
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L1(u) := ∂tu − d1∆u, L2(v) := ∂tv − d2∆v,

L3(w) := ∂tw − D∂xxw, L4(v) := −d2∂yv|y=0, L5(u) := −∂yu|y=0. (2.19)

By using u(0) = û and u(0)
= ũ as the initial iterations we can construct sequences {u(m)}∞m=1 and

{u(m)
}∞m=1 satisfying the same initial functions from the iteration process of scalar equations

L1(u(m)) + K1u(m)
= f1(u(m−1), v(m−1)) + K1u(m−1), in E∗,

L2(v(m)) + K2v(m)
= f2(u(m−1), v(m−1)) + K2v(m−1), in E∗,

L3(w(m)) + µw(m)
= g(v(m−1),w(m−1)) + µw(m−1), in E∗∗,

(L4 + ν)(v(m)) = −g(v(m−1),w(m−1)) + νv(m−1), in E∗∗,

L5(u(m)) = 0, in E∗∗.

(2.20)

Here we choose

K1 = γ1 + mab1, K2 = γ2 + ab2. (2.21)

{u(m)}∞m=1 satisfies the above equation with the superscripts replaced by subscripts. Indeed, (2.20) is
reduced to a linear parabolic equation with half-space homogeneous Neumamm condition with respect
to u and v, and a Cauchy problem of linear parabolic equation with respect to w. Thus {u(m)

}∞m=1 and
{u(m)}∞m=1 are well-defined. By using the monotone dynamical system method (Smith [25]), we have
the following lemma.

Lemma 2.1. The sequences {u(m)
}∞m=1 and {u(m)}∞m=1 governed by (2.20) possess the monotonicity

property

û ≤ u(m) ≤ u(m+1) ≤ u(m+1)
≤ u(m)

≤ ũ for m = 1, 2, · · · (2.22)

Moreover, for each m = 1, 2, · · · , u(m) and u(m) are coupled upper and lower solutions of (1.2).

Proof. Let s(1) = u(1) − u(0). We necessarily apply the comparison principle of standard parabolic
equation to s(1). By (2.20), s(1) satisfies

L1(s(1)) + K1s(1) = f1(u(0), v(0)) + K1u(0) − (L1(u(0)) + K1u(0))
= −L1(û) + f1(û, v̂) ≥ 0, in E∗,

L5(s(1)) = 0, in E∗∗,
s(1)(0, x, y) = 0, in R × R+.

Using comparison principle of standard parabolic equation yields s(1) ≥ 0. It follows that u(0) ≤ u(1).
On the other hand, we set q(1) = v(1) − v(0). By (2.20), q(1) satisfies

L2(q(1)) + K2q(1) = f2(u(0), v(0)) + K2u(0) − (L2(v(0)) + K2v(0))
= −L2(û) + f2(û, v̂) ≥ 0, in E∗,

(L4 + ν)(q(1)) = µw(0) − νv(0)|y=0 + νv(0)
y=0 − L4v̂ − νv̂|y=0 ≥ 0, in E∗∗,

q(1)(0, x, y) = 0, in R × R+.
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the parabolic comparison yields v(0) ≤ v(1). Meanwhile, using the similar process yields w(0) ≤ w(1).
Thus, we have u(0) ≤ u(1). Likewise, we have u(0)

≥ u(1).
Letting z(1) = u(1)

− u(1), it follows from (2.21) that
L1(z(1)) + K1z(1) = f1(u(0), v(0)) + K1u(0)

− ( f1(u(0), v(0)) + K1u(0)) ≥ 0, in E∗,
(L4 + ν)(z(1)) = µ(w(1)

− w(1)) − ν(u(1)
− u(1))|y=0 + ν(u(1)

− u(1))|y=0 ≥ 0, in E∗∗,
z(1)(0, x, y) = 0, in R × R+.

It follows again from comparison principle that u(1)
≥ u(1), and thus we have v(1) ≤ v(1). The above

conclusions show that

u(0) ≤ u(1) ≤ u(1)
≤ u(0)

. (2.23)

Now we show that u(1) and u(1) are upper and lower solutions of (1.2).
Next we use an induction method. By choosing u(1) and u(1) as the coupled upper and lower solutions

ũ and û, after a similar argument as above, we have

u(1) ≤ u(2) ≤ u(2)
≤ u(1)

, (2.24)

so u(2) and u(2) are coupled upper and lower solutions of (1.2). The conclusion of the lemma follows
from the induction principle. �

In view of Lemma 2.1, the pointwise limits

lim
m→∞

u(m)
= u, lim

m→∞
u(m) = u (2.25)

exist. In the following theorem we show that (u, v,w) and (u, v,w) are respectively the maximal and
minimal solutions of system (1.2).

Theorem 2.2. Assume that ũ and û be upper and lower solutions of system (1.2). Let (u, v,w) and
(u, v,w) be given by (2.25). Then (u, v,w) and (u, v,w) are the solutions of system (1.2). Moreover,

û ≤ u(m) ≤ u(m+1) ≤ u = u ≤ u(m+1)
≤ u(m)

≤ ũ. (2.26)

Proof. (i) To show that the limit (u, v,w) in (2.25) is the solution of (1.2), we use an integral
representation for the solution of the Cauchy problem and the linear parabolic Eq (2.20) under
Neumann boundary condition. Let G(t, x, y; τ, ξ1, ξ2) be the Green function given by

G1(t, x, y; τ, ξ1, ξ2) :=
e−K1t

4πd1(t − τ)

(
e−

(x−ξ1)2+(y−ξ2)2

4d1(t−τ) + e−
(x−ξ1)2+(−y−ξ2)2

4d1(t−τ)

)
,

G2(t, x, y; τ, ξ1, ξ2) :=
e−K2t

4πd2(t − τ)

(
e−

(x−ξ1)2+(y−ξ2)2

4d2(t−τ) + e−
(x−ξ1)2+(−y−ξ2)2

4d2(t−τ)

)
,

G3(t, x; τ, ξ) :=
e−µt

2
√
πD(t − τ)

e−
(x−ξ)2
4D(t−τ)
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We denote

I1(t, x, y) :=
∫
R×R+

G1(t, x, y; 0, ξ1, ξ2)u0(ξ1, ξ2)dξ1dξ2

I2(t, x, y) :=
∫
R×R+

G2(t, x, y; 0, ξ1, ξ2)v0(ξ1, ξ2)dξ1dξ2

I3(t, x) :=
∫
R

G3(t, x; 0, ξ)w0(ξ)dξ.

By the integral representation of linear parabolic boundary value problems [26], the solution of (2.20)
is given by

u(m)(t, x, y) =I1(t, x, y) +

∫ t

0
dτ

∫
R×R+

G1(t, x, y; τ, ξ1, ξ2)
(

f1(u(m−1), v(m−1)) + K1u(m−1)
)

dξ1dξ2

v(m)(t, x, y) =I2(t, x, y) +

∫ t

0
dτ

∫
R×R+

G2(t, x, y; τ, ξ1, ξ2)
(

f2(u(m−1), v(m−1)) + K2v(m−1)
)

dξ1dξ2

−
1
d2

∫ t

0
dτ

∫
R

G2(t, x, 0; τ, ξ1, 0)
(
−g(v(m−1),w(m−1)) + ν(v(m−1)

− v(m))
)

dξ1

w(m)(t, x) =I3(t, x) +

∫ t

0
dτ

∫
R

G3(t, x; τ, ξ)
(
g(v(m−1),w(m−1)) + µw(m−1)

)
dξ

The integrands in the above equation are integrable because the definition of Green function G satisfies
the admissible growth in the time variable. Using the dominated convergence theorem yields that the
limits (u, v,w) satisfy the relation

u(t, x, y) =I1(t, x, y) +

∫ t

0
dτ

∫
R×R+

G1(t, x, y; 0, ξ1, ξ2) ( f1(u, v) + K1u) dξ1dξ2

v(t, x, y) =I2(t, x, y) +

∫ t

0
dτ

∫
R×R+

G2(t, x, y; 0, ξ1, ξ2) ( f2(u, v) + K2v) dξ1dξ2

−
1
d2

∫ t

0
dτ

∫
R

G2(t, x, 0; τ, ξ1, 0) (−g(v,w)) dξ1

w(t, x) =I3(t, x) +

∫ t

0
dτ

∫
R

G3(t, x; 0, ξ) (g(v,w) + µw) dξ

(2.27)

Then (u, v,w) is a solution of (1.2). A similar argument shows that (u, v,w) is also a solution of (1.2).
(ii) We denote by

E∗T := {(t, x, y) : t ∈ (0,T ], (x, y) ∈ R × R+}, E∗∗T := {(t, x) : t ∈ (0,T ], x ∈ R}.

By plugging (2.18) into (2.27), we obtain

w(t, x) = I3(t, x) +
∫ t

0
dτ

∫
R
G3(t, x; τ, ξ)νvdξ,

w(t, x) = I3(t, x) +
∫ t

0
dτ

∫
R
G3(t, x; τ, ξ)νvdξ.

In view of G3, we have
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(w − w) = ν

∫ t

0
dτ

∫
R

G3(t, x; τ, ξ)(v − v)dξ

≤ ν||v − v||L∞(Et)

∫ t

0
e−µtdτ

∫
R

1
2
√
πD(t − τ)

e−
(x−ξ)2
4D(t−τ) dξ

=
ν

µ
(1 − e−µt)||v − v||L∞(E∗t ). (2.28)

We also obtain

u(t, x, y) = I1(t, x, y) +
∫ t

0
dτ

∫
R×R+ G1(t, x, y; τ, ξ1, ξ2)( f1(u, v) + K1u)dξ1dξ2

u(t, x, y) = I1(t, x, y) +
∫ t

0
dτ

∫
R×R+ G1(t, x, y; τ, ξ1, ξ2)( f1(u, v) + K1u)dξ1dξ2

Since the definition of K1 in (2.16), we have | f1(u, v) + K1u − f1(u, v) − K1u| ≤ 2K1(|u − u| + |v − v|).
Recalling G2, we have

(u − u) ≤ 2K1

∫ t

0
dτ

∫
R×R+

G1(t, x, y; τ, ξ1, ξ2)(|u − u| + |v − v|)dξ1dξ2

≤ 2K1(||u − u||L∞(Et) + ||v − v||L∞(Et))
∫ t

0
e−K1tdτ∫

R×R+

1
4πd1(t − τ)

(
e−

(x−ξ1)2+(y−ξ2)2

4d1(t−τ) + e−
(x−ξ1)2+(−y−ξ2)2

4d1(t−τ)

)
dξ1dξ2

= 2(1 − e−K1t)(||u − u||L∞(E∗t ) + ||v − v||L∞(E∗t )). (2.29)

By (2.27), we have

v(t, x, y) =I2(t, x, y) +

∫ t

0
dτ

∫
R×R+

G2(t, x, y; τ, ξ1, ξ2)( f2(u, v) + K2v)dξ1dξ2

−
1
d2

∫ t

0
dτ

∫
R

G2(t, x, 0; τ, ξ1, 0) (−g(v,w)) dξ1

v(t, x, y) =I2(t, x, y) +

∫ t

0
dτ

∫
R×R+

G2(t, x, y; τ, ξ1, ξ2)( f2(u, v) + K2v)dξ1dξ2

−
1
d2

∫ t

0
dτ

∫
R

G2(t, x, 0; τ, ξ1, 0)
(
−g(v,w)

)
dξ1

Since the definition of K2 in (2.21), we have | f2(u, v) + K2v− f2(u, v)− K2v| ≤ 2K2(|u− u|+ |v− v|). We
also have |g(u,w) − g(u,w)| ≤ (µ + ν)(|u − u| + |w − w|). Recalling G2, we have

(v − v) ≤ 2(1 − e−K2t)(||v − v||L∞(E∗t ) + ||v − v||L∞(E∗t ))

+
1
d2

(µ + ν)(||v − v||L∞(E∗t ) + ||w − w||L∞(E∗∗t ))
∫ t

0
dτ

∫
R

G2(t, x, 0; τ, ξ1, 0)dξ1

≤ 2(1 − e−K2t)(||v − v||L∞(E∗t ) + ||v − v||L∞(E∗t ))

+
1
d2

(µ + ν)(||v − v||L∞(E∗t ) + ||w − w||L∞(E∗∗t ))
1 − e−K2t

K2
(2.30)
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Combining (2.28), (2.29) and (2.30), by choosing K := max{ ν
µ
, µ+ν

d2K2
+ 2} and γ = max{K1,K2, µ},

we obtain

(||u − u||L∞(E∗t ) + ||v − v||L∞(E∗t ) + ||w − w||L∞(E∗∗t )) ≤ K(1 − e−γt)
(||u − u||L∞(E∗t ) + ||v − v||L∞(E∗t ) + ||w − w||L∞(E∗∗t )), for t ∈ (0,∞). (2.31)

Thus there exist a constant T := ln K
K−1 such that ||u − u||L∞(E∗t ) + ||v − v||L∞(E∗t ) + ||w − w||L∞(E∗∗t ) = 0, that

is u ≡ u, v ≡ v, and w ≡ w for t ∈ (0,T ]. Owing to the fact the above γ and K do not depend on the
initial value, T can be extended to the time∞. �

Notice that the above theorem is also valid when the upper and the lower solutions are constant
vectors. Moreover we can induce the global asymptotic convergence of system (1.2). Suppose that
there are constant vectors c̃ := (c̃1, c̃2, c̃3) and ĉ = (ĉ1, ĉ2, ĉ3) such that fi(c̃1, c̃2) ≤ 0 and fi(ĉ1, ĉ2) ≥ 0
for i = 1, 2. Here c̃3 = ν

µ
c̃2, ĉ3 = ν

µ
ĉ2, and ĉi ≤ c̃i for i = 1, 2, 3. In view of Definition 2.1, c̃ and ĉ are

upper and lower solutions of system (1.2). Thus using c̃ and ĉ as initial iteration, after the procedure
(2.20), we can obtain the maximal solution c := (c1, c2, c3) and minimal solution c := (c1, c2, c3). Since
the solution of system (2.20) is unique, the sequences {c(m)

i } and {c(m)
i } are constants. The limits of {c(m)

i }

and {c(m)
i } satisfy 

f1(c1, c2) = 0 = f1(c1, c2),
f2(c1, c2) = 0 = f2(c1, c2),
c3 = ν

µ
c2, c3 = ν

µ
c2.

(2.32)

We give the convergence result in the next theorem.

Theorem 2.3. Suppose that the initial functions of system (1.2) satisfy ĉ1 ≤ u0(x, y) ≤ c̃1, ĉ2 ≤

v0(x, y) ≤ c̃2, and ĉ3 ≤ w0(x) ≤ c̃3. If ci = ci := ci for i = 1, 2, 3, then for (x, y) ∈ R × R+,

lim
t→∞

u(t, x, y) = c1, lim
t→∞

v(t, x, y) = c2, lim
t→∞

w(t, x) = c3.

Proof. We denote (ũ1, ũ2, ũ3) by the solution of the following system

∂tu − d1∆u = f1(u, v), t > 0, (x, y) ∈ R × R+,

∂tv − d2∆v = f2(u, v), t > 0, (x, y) ∈ R × R+,

∂tw − D∂xxw = νu|y=0 − µw, t > 0, x ∈ R,
∂yu|y=0 = 0, t > 0, x ∈ R,
−d2∂yv|y=0 = µw − νv|y=0, t > 0, x ∈ R,
u(0, x, y) = c̃1, v(0, x, y) = c̃2, (x, y) ∈ R × R+,

w(0, x) = c̃3, x ∈ R.

(2.33)

It is easy to see that c is a lower solution of (2.33). Then we have ci ≤ ũi for i = 1, 2, 3. By using
Theorem 2.1, ũi is time-nonincreasing. The limit of ũi exists as t → ∞. We denote by limt→∞ ũi(t, ·) =
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ui(·). Thanks to the Schauder estimates, ui is the stationary solution of system (1.2). That is to say,
(u1, u2, u3) satisfies 

−d1∆u = f1(u, v), (x, y) ∈ R × R+,

−d2∆v = f2(u, v), (x, y) ∈ R × R+,

−D∂xxw = νu|y=0 − µw, x ∈ R,

∂yu|y=0 = 0, x ∈ R,

−d2∂yv|y=0 = µw − νv|y=0, x ∈ R.

(2.34)

Meanwhile, c is also a stationary solution of system (1.2). Moreover, in view of the iterative process
of c, (c(1)

1 , c(1)
2 , c(1)

3 ) satisfies

−d1∆c(1)
1 = f1(c̃1, c̃2) ≥ f1(u1, u2), (x, y) ∈ R × R+,

−d2∆c(1)
2 = f2(c̃1, c̃2) ≥ f2(u1, u2), (x, y) ∈ R × R+,

(−D∂xx + µ)c(1)
3 = νc̃2|y=0 ≥ νu2|y=0, x ∈ R,

∂yc
(1)
1 |y=0 = 0 ≥ ∂yu1|y=0, x ∈ R,

(−d2∂y + ν)c(1)
2 |y=0 = µc̃3 ≥ µu3, x ∈ R,

(2.35)

where the righthand inequality sign is due to ui ≤ c̃i for i = 1, 2, 3. By using comparison principle
(Theorem 2.1), we induce that c(1)

i ≥ ui for i = 1, 2, 3. By using an induction method, (c(2)
1 , c(2)

2 , c(2)
3 )

satisfies 

−d1∆c(2)
1 = f1(c(1)

1 , c(1)
2 ) ≥ f1(u1, u2), (x, y) ∈ R × R+,

−d2∆c(2)
2 = f2(c(1)

1 , c(1)
2 ) ≥ f2(u1, u2), (x, y) ∈ R × R+,

(−D∂xx + µ)c(2)
3 = νc(1)

2 |y=0 ≥ νu2|y=0, x ∈ R,

∂yc
(2)
1 |y=0 = 0 ≥ ∂yu1|y=0, x ∈ R,

(−d2∂y + ν)c(2)
2 |y=0 = µc(1)

3 ≥ µu3, x ∈ R.

(2.36)

By using comparison principle (Theorem 2.1), we induce that c(2)
i ≥ ui for i = 1, 2, 3. After an induction

argument, we have c(m)
i ≥ ui for i = 1, 2, 3. Here m = 1, 2, · · · . By letting m→ ∞, we have

ci ≥ ui = lim
t→∞

ũi(t, ·), for i = 1, 2, 3. (2.37)

On the other hand, We denote (û1, û2, û3) by the solution of the following system

∂tu − d1∆u = f1(u, v), t > 0, (x, y) ∈ R × R+,

∂tv − d2∆v = f2(u, v), t > 0, (x, y) ∈ R × R+,

∂tw − D∂xxw = νu|y=0 − µw, t > 0, x ∈ R,
∂yu|y=0 = 0, t > 0, x ∈ R,
−d2∂yv|y=0 = µw − νv|y=0, t > 0, x ∈ R,
u(0, x, y) = ĉ1, v(0, x, y) = ĉ2, (x, y) ∈ R × R+,

w(0, x) = ĉ3, x ∈ R.

(2.38)
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In a similar way, we can induce

ci ≤ ui = lim
t→∞

ûi(t, ·), for i = 1, 2, 3. (2.39)

Since ci = ci := ci for i = 1, 2, 3, it follows from (2.38) and (2.39) that

lim
t→∞

ũi(t, ·) = lim
t→∞

ûi(t, ·) = ci, for i = 1, 2, 3. (2.40)

For any initial functions satisfying ĉ1 ≤ u0(x, y) ≤ c̃1, ĉ2 ≤ v0(x, y) ≤ c̃2, and ĉ3 ≤ w0(x) ≤ c̃3, the
solution (u, v,w) is a lower solution of system (2.33) and a upper solution of system (2.38). By using
comparison principle (Theorem 2.1), we have (û1, û2, û3) ≤ (u, v,w) ≤ (ũ1, ũ2, ũ3). Thus we induce that

lim
t→∞

(u, v,w) = (c1, c2, c3).

�

Theorem 2.4. If the initial functions of system (1.2) satisfy 0 ≤ u0(x, y) ≤ 1, 0 ≤ v0(x, y) ≤ 1, and
0 ≤ w0(x) ≤ ν

µ
. then system (1.2) possesses a unique solution (u, v,w) for t ∈ (0,∞). Moreover, for

(x, y) ∈ R × R+,

0 ≤ u(t, x, y) ≤ 1, 0 ≤ v(t, x, y) ≤ 1, 0 ≤ w(t, x) ≤
ν

µ
. (2.41)

Proof. In order to utilize Theorem 2.2, we need to construct upper and lower solutions of system (1.2).
We set

M1 = 1, M2 = 1, M3 =
ν

µ
.

It is easy to verify that (M1,M2,M3) and (0, 0, 0) are upper and lower solutions of system (1.2). Using
Theorem 2.2, system (1.2) has a unique solution. Moreover we can obtain (2.41). �

3. Stabilities of the equilibria

Based on the basic reproduction R0 := ma2b1b2
γ1γ2

, we examine the asymptotic stability of the disease-
free equilibrium (0, 0, 0) and endemic equilibrium.

Theorem 3.1. Suppose that the initial functions of system (1.2) satisfy 0 ≤ u0(x, y) ≤ 1, 0 ≤ v0(x, y) ≤ 1
and 0 ≤ w0(x) ≤ ν

µ
, if R0 < 1, then the solution to system (1.2) satisfies

lim
t→∞

(u, v,w) = (0, 0, 0). (3.1)

Proof. We use the method of upper and lower solutions. we set

M1 = 1, M2 = 1, M3 =
ν

µ
.
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It is easy to verify that (M1,M2,M3) and (0, 0, 0) are upper and lower solutions of system (1.2). By
using Theorem 2.3, we can construct the maximal solution c and minimal solution c, which satisfy

mab1c2(1 − c1) − γ1c1 = 0 = mab1c2(1 − c1) − γ1c1,

ab2(1 − c2)c1 − γ2c2 = 0 = ab2(1 − c2)c1 − γ2c2,

c3 = ν
µ
c2, c3 = ν

µ
c2.

By a directly computation, we have

c1c2[
ma2b1b2

γ1γ2
(1 − c1)(1 − c2) − 1] = 0.

Since R0 < 1, we induce that c1c2 = 0. Combing with mab1c2(1 − c1) − γ1c1 = 0, we have

c1 = c2 = c3 = 0. (3.2)

On the other hand ,a similar argument yields that

c1 = c2 = c3 = 0. (3.3)

It follows from (3.2) and (3.3) that

ci = ci = 0 for i = 1, 2, 3. (3.4)

By applying Theorem 2.3, we have

lim
t→∞

(u, v,w) = (c1, c2, c3) = (0, 0, 0).

�

Theorem 3.2. Suppose that δ is an arbitrary small positive constant such that δ ≤ u0(x, y) ≤ 1,
δ ≤ v0(x, y) ≤ 1 and δ ≤ w0(x, y) ≤ ν

µ
. If R0 > 1, then the solution to system (1.2) satisfies

lim
t→∞

(u, v,w) = (u∗, v∗,w∗), (3.5)

where (u∗, v∗) is a unique positive solution of f1(u∗, v∗) = 0,
f2(u∗, v∗) = 0.

(3.6)

and w∗ = ν
µ
v∗.

Proof. We first consider the nullclines of system (1.2), which is written byv =
γ1u

mab1(1−u) ,

u =
γ2v

ab2(1−v) .
(3.7)
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By taking the derivatives of (3.6), we have dv
du =

γ1
mab1(1−u)2 > 0,

du
dv =

γ2
ab2(1−v)2 > 0.

(3.8)

Hence the two nullclines are monotone increasing. In the domain (u, v) ∈ [0, 1] × [0,∞), they have the
same start point (0, 0), but the different end points (1,∞) and (1, ab2

ab2+γ2
). The nullclines has a unique

positive cross points (u∗, v∗).
Next we use the method of upper and lower solutions. we set

M1 = 1, M2 = 1, M3 =
ν

µ
.

It is easy to verify that (M1,M2,M3) and (δ, δ, δ) are upper and lower solutions of system (1.2). By
using Theorem 2.3, we can construct the maximal solution c and minimal solution c, which satisfy
c ≥ ci > 0 for i = 1, 2, 3. Moreover, (c1, c2) and (c1, c2) are the positive solutions of the following
nullclines v =

γ1u
mab1(1−u) ,

u =
γ2v

ab2(1−v) .

Since the nullclines has a unique positive cross points (u∗, v∗), we obtain that c1 = c1 = u∗, c2 = c2 = v∗.
Then c3 = c3 = w∗.

By applying Theorem 2.3, we have

lim
t→∞

(u, v,w) = (u∗, v∗,w∗).

�

4. Discussion

Since mosquito is a prominent vector of Malaria, it is of crucial importance to study the qualitative
spreading behavior of mosquitoes in implementing vector control strategies and preventing mosquito-
borne diseases. A large proportion of the current studies on epidemic transmission dynamics, using
ordinary differential systems, focuses on the temporal development and control of infectious diseases,
thus uncertainty still exists concerning how population mobility affects on epidemic outbreaks. The
spatial factor should be taken into consideration in the modeling processes in order to study the
geographic spread of infectious diseases. Laplacian diffusion systems with spatially homogeneous
parameters (Murray [27], Ruan [28]) and spatially heterogeneous parameters (Allen et al. [14], Lei
et al. [18], Li et al. [17], Song et al. [1]) have been proposed to study the spatio-temporal dynamics
epidemic models. These studies exhibit an equal probability of mosquitoes’ movement to any direction.
Yet our road diffusion model is different since mosquitoes move at a faster speed along the highway. We
studied the long-time dynamical behaviors of Ross epidemic model. To the best of our knowledge, the
road diffusion has never been applied to describe the two compartments spread of infectious diseases
in any epidemic model in the literature.
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Our results indicate that mosquitoes has an impact on long-time dynamics of infectious diseases
in road diffusion models. According to Theorem 3.1, when the basic reproduction number R0 < 1,
system (1.2) admits a globally asymptotically stable disease-free equilibrium, and an asymptotic stable
endemic equilibrium when the basic reproduction number R0 > 1 in view of Theorem 3.2. So we
have generalized the threshold dynamics of the classical Ross model to that in a road diffusion model.
Although many factors related to a real disease have been simplified in our model, we capture the
dynamics of mosquito-borne diseases, which helps us to control and prevent the spread of diseases.

5. Conclusions

Since Ronald Ross discovers the transmission of Malaria by mosquitoes, the differential equations
have been used to study the spread of infectious disease (see [29–31]). A natural question is how
to describe the dynamical system when the infectious disease spreads along the directed diffusion.
We introduce the road-field diffusion into a Ross epidemic model which describes the dynamical
behaviors of infected Mosquitoes and humans. Our result reveals that the disease-free equilibrium is
asymptotically stable if the basic reproduction number is lower than 1 while the endemic equilibrium
asymptotically stable if the basic reproduction number is greater than 1.
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