Research article

Supervised neural learning for the predator-prey delay differential system of Holling form-III

  • Received: 05 July 2022 Revised: 22 August 2022 Accepted: 30 August 2022 Published: 13 September 2022
  • MSC : 92B20, 34A34

  • The purpose of this work is to present the stochastic computing study based on the artificial neural networks (ANNs) along with the scaled conjugate gradient (SCG), ANNs-SCG for solving the predator-prey delay differential system of Holling form-III. The mathematical form of the predator-prey delay differential system of Holling form-III is categorized into prey class, predator category and the recent past effects. Three variations of the predator-prey delay differential system of Holling form-III have been numerical stimulated by using the stochastic ANNs-SCG procedure. The selection of the data to solve the predator-prey delay differential system of Holling form-III is provided as 13%, 12% and 75% for testing, training, and substantiation together with 15 neurons. The correctness and exactness of the stochastic ANNs-SCG method is provided by using the comparison of the obtained and data-based reference solutions. The constancy, authentication, soundness, competence, and precision of the stochastic ANNs-SCG technique is performed through the analysis of the correlation measures, state transitions (STs), regression analysis, correlation, error histograms (EHs) and MSE.

    Citation: Naret Ruttanaprommarin, Zulqurnain Sabir, Salem Ben Said, Muhammad Asif Zahoor Raja, Saira Bhatti, Wajaree Weera, Thongchai Botmart. Supervised neural learning for the predator-prey delay differential system of Holling form-III[J]. AIMS Mathematics, 2022, 7(11): 20126-20142. doi: 10.3934/math.20221101

    Related Papers:

  • The purpose of this work is to present the stochastic computing study based on the artificial neural networks (ANNs) along with the scaled conjugate gradient (SCG), ANNs-SCG for solving the predator-prey delay differential system of Holling form-III. The mathematical form of the predator-prey delay differential system of Holling form-III is categorized into prey class, predator category and the recent past effects. Three variations of the predator-prey delay differential system of Holling form-III have been numerical stimulated by using the stochastic ANNs-SCG procedure. The selection of the data to solve the predator-prey delay differential system of Holling form-III is provided as 13%, 12% and 75% for testing, training, and substantiation together with 15 neurons. The correctness and exactness of the stochastic ANNs-SCG method is provided by using the comparison of the obtained and data-based reference solutions. The constancy, authentication, soundness, competence, and precision of the stochastic ANNs-SCG technique is performed through the analysis of the correlation measures, state transitions (STs), regression analysis, correlation, error histograms (EHs) and MSE.



    加载中


    [1] J. D. Ferreira, C. A. T. Salazar, P. C. C. Tabares, Weak Allee effect in a predator-prey model involving memory with a hump, Nonlinear Anal.: Real World Appl., 14 (2013), 536–548. https://doi.org/10.1016/j.nonrwa.2012.07.014 doi: 10.1016/j.nonrwa.2012.07.014
    [2] M. Cavani, M. Farkas, Bifurcations in a predator-prey model with memory and diffusion. I: Andronov-Hopf bifurcation, Acta Math. Hung., 63 (1994), 213–229. https://doi.org/10.1007/bf01874129 doi: 10.1007/bf01874129
    [3] M. Umar, Z. Sabir, M. A. Z. Raja, Intelligent computing for numerical treatment of nonlinear prey-predator models, Appl. Soft Comput., 80 (2019), 506–524. https://doi.org/10.1016/j.asoc.2019.04.022 doi: 10.1016/j.asoc.2019.04.022
    [4] Z. Sabir, T. Botmart, M. A. Z. Raja, W. Weera, An advanced computing scheme for the numerical investigations of an infection-based fractional-order nonlinear prey-predator system, Plos One, 17 (2022), 1–13. https://doi.org/10.1371/journal.pone.0265064 doi: 10.1371/journal.pone.0265064
    [5] U. Ghosh, S. Pal, M. Banerjee, Memory effect on Bazykin's prey-predator model: Stability and bifurcation analysis, Chaos Solitons Fract., 143 (2021), 1–10. https://doi.org/10.1016/j.chaos.2020.110531 doi: 10.1016/j.chaos.2020.110531
    [6] A. Gökçe, The influence of past in a population system involving intraspecific competition and Allee effect, Eur. Phys. J. Plus, 137 (2022), 1–11. https://doi.org/10.1140/epjp/s13360-022-02425-z doi: 10.1140/epjp/s13360-022-02425-z
    [7] B. Sahoo, S. Poria, Dynamics of predator-prey system with fading memory, Appl. Math. Comput., 347 (2019), 319–333. https://doi.org/10.1016/j.amc.2018.11.013 doi: 10.1016/j.amc.2018.11.013
    [8] L. Berec, E. Angulo, F. Courchamp, Multiple Allee effects and population management, Trends Ecol. Evol., 22 (2007), 185–191. https://doi.org/10.1016/j.tree.2006.12.002 doi: 10.1016/j.tree.2006.12.002
    [9] B. Souayeh, Z. Sabir, M. Umar, M. W. Alam, Supervised neural network procedures for the novel fractional food supply model, Fractal Fract., 6 (2022), 1–15. https://doi.org/10.3390/fractalfract6060333 doi: 10.3390/fractalfract6060333
    [10] E. Angulo, G. M. Luque, S. D. Gregory, J. W. Wenzel, C. Bessa‐Gomes, L. Berec, et al., Allee effects in social species, J. Anim. Ecol., 87 (2018), 47–58. https://doi.org/10.1111/1365-2656.12759
    [11] T. Perälä, J. A. Hutchings, A. Kuparinen, Allee effects and the Allee-effect zone in northwest Atlantic cod, Biol. Lett., 18 (2022), 1–6. https://doi.org/10.1098/rsbl.2021.0439 doi: 10.1098/rsbl.2021.0439
    [12] B. Dennis, Allee effects: Population growth, critical density, and the chance of extinction, Nat. Resour. Model., 3 (1989), 481–538. https://doi.org/10.1111/j.1939-7445.1989.tb00119.x doi: 10.1111/j.1939-7445.1989.tb00119.x
    [13] T. Botmart, Z. Sabir, M. A. Z. Raja, M. R. Ali, R. Sadat, A. A. Aly, et al., A hybrid swarming computing approach to solve the biological nonlinear Leptospirosis system, Biomed. Signal Process. Control, 77 (2022), 103789. https://doi.org/10.1016/j.bspc.2022.103789
    [14] F. Courchamp, L. Berec, J. Gascoigne, Allee effects in ecology and conservation, 1 Ed., New York: Oxford University Press Inc., 2008. https://doi.org/10.1093/acprof:oso/9780198570301.001.0001
    [15] C. Çelik, H. Merdan, O. Duman, Ö. Akın, Allee effects on population dynamics with delay, Chaos Solitons Fract., 37 (2008), 65–74. https://doi.org/10.1016/j.chaos.2006.08.019
    [16] J. P. Tripathi, P. S. Mandal, A. Poonia, V. P. Bajiya, A widespread interaction between generalist and specialist enemies: The role of intraguild predation and Allee effect, Appl. Math. Model., 89 (2021), 105–135. https://doi.org/10.1016/j.apm.2020.06.074 doi: 10.1016/j.apm.2020.06.074
    [17] P. C. Tabares, J. D. Ferreira, V. Rao, Weak Allee effect in a predator-prey system involving distributed delays, Comput. Appl. Math., 30 (2011), 675–699. https://doi.org/10.1590/S1807-03022011000300011 doi: 10.1590/S1807-03022011000300011
    [18] T. Botmart, W. Weera, Guaranteed cost control for exponential synchronization of cellular neural networks with mixed time-varying delays via hybrid feedback control, Abstr. Appl. Anal., 2013 (2013), 175796. https://doi.org/10.1155/2013/175796 doi: 10.1155/2013/175796
    [19] M. JovanoviĆ, M. KrstiĆ, Extinction in stochastic predator-prey population model with Allee effect on prey, Discrete Cont. Dyn. Syst. Ser. B, 22 (2017), 2651–2667. https://doi.org/10.3934/dcdsb.2017129 doi: 10.3934/dcdsb.2017129
    [20] P. J. Pal, T. Saha, M. Sen, M. Banerjee, A delayed predator–prey model with strong Allee effect in prey population growth, Nonlinear Dyn., 68 (2012), 23–42. https://doi.org/10.1007/s11071-011-0201-5 doi: 10.1007/s11071-011-0201-5
    [21] A. Surendran, M. J. Plank, M. J. Simpson, Population dynamics with spatial structure and an Allee effect, Proc. Math. Phys. Eng. Sci., 476 (2020), 20200501. https://doi.org/10.1098/rspa.2020.0501 doi: 10.1098/rspa.2020.0501
    [22] M. Jankovic, S. Petrovskii, Are time delays always destabilizing? Revisiting the role of time delays and the Allee effect, Theor. Ecol., 7 (2014), 335–349. https://doi.org/10.1007/s12080-014-0222-z doi: 10.1007/s12080-014-0222-z
    [23] A. W. Stoner, M. Ray-Culp, Evidence for Allee effects in an over-harvested marine gastropod: Density-dependent mating and egg production, Mar. Ecol. Prog. Ser., 202 (2000), 297–302. http://dx.doi.org/10.3354/meps202297
    [24] F. Courchamp, B. T. Grenfell, T. H. Clutton‐Brock, Impact of natural enemies on obligately cooperative breeders, Oikos, 91 (2000), 311–322. https://doi.org/10.1034/j.1600-0706.2000.910212.x
    [25] M. Kuussaari, I. Saccheri, M. Camara, I. Hanski, Allee effect and population dynamics in the Glanville fritillary butterfly, Oikos, 82 (1998), 384–392. https://doi.org/10.2307/3546980 doi: 10.2307/3546980
    [26] Z. Ma, Hopf bifurcation of a generalized delay-induced predator-prey system with habitat complexity, Int. J. Bifurcat. Chaos, 30 (2020), 2050082. https://doi.org/10.1142/S0218127420500820 doi: 10.1142/S0218127420500820
    [27] H. Yu, M. Zhao, R. P. Agarwal, Stability and dynamics analysis of time delayed eutrophication ecological model based upon the Zeya reservoir, Math. Comput. Simul., 97 (2014), 53–67. https://doi.org/10.1016/j.matcom.2013.06.008 doi: 10.1016/j.matcom.2013.06.008
    [28] Y. Tang, L. Zhou, Stability switch and Hopf bifurcation for a diffusive prey–predator system with delay, J. Math. Anal. Appl., 334 (2007), 1290–1307. https://doi.org/10.1016/j.jmaa.2007.01.041 doi: 10.1016/j.jmaa.2007.01.041
    [29] A. Gökçe, A mathematical study for chaotic dynamics of dissolved oxygen-phytoplankton interactions under environmental driving factors and time lag, Chaos Solitons Fract., 151 (2021), 1–13. https://doi.org/10.1016/j.chaos.2021.111268 doi: 10.1016/j.chaos.2021.111268
    [30] K. Chakraborty, M. Chakraborty, T. K. Kar, Bifurcation and control of a bioeconomic model of a prey–predator system with a time delay, Nonlinear Anal.: Hybrid Syst., 5 (2011), 613–625. https://doi.org/10.1016/j.nahs.2011.05.004 doi: 10.1016/j.nahs.2011.05.004
    [31] H. Zhao, X. Huang, X. Zhang, Hopf bifurcation and harvesting control of a bioeconomic plankton model with delay and diffusion terms, Phys. A: Stat. Mech. Appl., 421 (2015), 300–315. https://doi.org/10.1016/j.physa.2014.11.042 doi: 10.1016/j.physa.2014.11.042
    [32] A. Gökçe, Numerical bifurcation analysis for a prey-predator type interactions with a time lag and habitat complexity, Bitlis Eren Ü niv. Fen Bilim. Derg., 10 (2021), 57–66. https://doi.org/10.17798/bitlisfen.840245 doi: 10.17798/bitlisfen.840245
    [33] K. Gopalsamy, G. Ladas, On the oscillation and asymptotic behavior of $\dot{N}(t)=N(t)[a+ \left.b N(t-\tau)-c N^2(t-\tau)\right]$, Quart. Appl. Math., 48 (1990), 433–440.
    [34] M. Umar, Z. Sabir, F. Amin, J. L. Guirao, M. A. Z. Raja, Stochastic numerical technique for solving HIV infection model of CD4+ T cells, Eur. Phys. J. Plus, 135 (2020), 1–19. https://doi.org/10.1140/epjp/s13360-020-00417-5 doi: 10.1140/epjp/s13360-020-00417-5
    [35] Z. Sabir, Stochastic numerical investigations for nonlinear three-species food chain system, Int. J. Biomath., 15 (2022), 2250005. https://doi.org/10.1142/S179352452250005X doi: 10.1142/S179352452250005X
    [36] Z. Sabir, M. R. Ali, R. Sadat, Gudermannian neural networks using the optimization procedures of genetic algorithm and active set approach for the three-species food chain nonlinear model, J. Ambien. Intell. Human. Comput., 13 (2022), 1–10. https://doi.org/10.1007/s12652-021-03638-3 doi: 10.1007/s12652-021-03638-3
    [37] M. Umar, Z. Sabir, M. A. Z. Raja, M. Shoaib, M. Gupta, Y. G. Sánchez, A stochastic intelligent computing with neuro-evolution heuristics for nonlinear SITR system of novel COVID-19 dynamics, Symmetry, 12 (2020), 1–17. https://doi.org/10.3390/sym12101628
    [38] M. Umar, F. Amin, H. A. Wahab, D. Baleanu, Unsupervised constrained neural network modeling of boundary value corneal model for eye surgery, Appl. Soft Comput., 85 (2019), 1–16. https://doi.org/10.1016/j.asoc.2019.105826 doi: 10.1016/j.asoc.2019.105826
    [39] B. Wang, J. F. Gomez-Aguilar, Z. Sabir, M. A. Z. Raja, W. F. Xia, H. Jahanshahi, et al., Numerical computing to solve the nonlinear corneal system of eye surgery using the capability of Morlet wavelet artificial neural networks, Fractals, 30 (2022), 1–19. https://doi.org/10.1142/S0218348X22401478
    [40] Z. Sabir, Neuron analysis through the swarming procedures for the singular two-point boundary value problems arising in the theory of thermal explosion, Eur. Phys. J. Plus, 137 (2022), 1–18. https://doi.org/10.1140/epjp/s13360-022-02869-3 doi: 10.1140/epjp/s13360-022-02869-3
    [41] Z. Sabir, H. A. Wahab, Evolutionary heuristic with Gudermannian neural networks for the nonlinear singular models of third kind, Phys. Scr., 96 (2021), 1–12. https://doi.org/10.1088/1402-4896/ac3c56 doi: 10.1088/1402-4896/ac3c56
    [42] T. Saeed, Z. Sabir, M. S. Alhodaly, H. H. Alsulami, Y. G. Sánchez, An advanced heuristic approach for a nonlinear mathematical based medical smoking model, Results Phys., 32 (2022), 1–13. https://doi.org/10.1016/j.rinp.2021.105137
    [43] A. Gökçe, A dynamic interplay between Allee effect and time delay in a mathematical model with weakening memory, Appl. Math. Comput., 430 (2022), 127306. https://doi.org/10.1016/j.amc.2022.127306 doi: 10.1016/j.amc.2022.127306
    [44] M. R. Ali, S. Raut, S. Sarkar, U. Ghosh, Unraveling the combined actions of a Holling type III predator–prey model incorporating Allee response and memory effects, Comp. Math. Methods., 3 (2021), 1–18. https://doi.org/10.1002/cmm4.1130 doi: 10.1002/cmm4.1130
    [45] A. Rojas-Palma, E. González-Olivares, Optimal harvesting in a predator-prey model with Allee effect and sigmoid functional response, Appl. Math. Model., 36 (2012), 1864–1874. https://doi.org/10.1016/j.apm.2011.07.081
    [46] T. Botmart, N. Yotha, P. Niamsup, W. Weera, Hybrid adaptive pinning control for function projective synchronization of delayed neural networks with mixed uncertain couplings, Complexity, 2017 (2017), 4654020. https://doi.org/10.1155/2017/4654020 doi: 10.1155/2017/4654020
    [47] P. Lakshminarayana, K. Vajravelu, G. Sucharitha, S. Sreenadh, Peristaltic slip flow of a Bingham fluid in an inclined porous conduit with Joule heating, Appl. Math. Nonlinear Sci., 3 (2018), 41–54. https://doi.org/10.21042/AMNS.2018.1.00005 doi: 10.21042/AMNS.2018.1.00005
    [48] T. Sajid, S. Tanveer, Z. Sabir, J. L. G. Guirao, Impact of activation energy and temperature-dependent heat source/sink on Maxwell–Sutterby fluid, Math. Probl. Eng., 2020 (2020), 1–15. https://doi.org/10.1155/2020/5251804 doi: 10.1155/2020/5251804
    [49] R. Ahmad, A. Farooqi, J. Zhang, N. Ali, Steady flow of a power law fluid through a tapered non-symmetric stenotic tube, Appl. Math. Nonlinear Sci., 4 (2019), 255–266. https://doi.org/10.2478/AMNS.2019.1.00022 doi: 10.2478/AMNS.2019.1.00022
    [50] Z. Sabir, A. Imran, M. Umar, M. Zeb, M. Shoaib, M. A. Z. Raja, A numerical approach for 2-D Sutterby fluid-flow bounded at a stagnation point with an inclined magnetic field and thermal radiation impacts, Therm. Sci., 25 (2021), 1975–1987. https://doi.org/10.2298/TSCI191207186S doi: 10.2298/TSCI191207186S
    [51] Z. Sabir, M. A. Z. Raja, M. Shoaib, J. F. Aguilar, FMNEICS: Fractional Meyer neuro-evolution-based intelligent computing solver for doubly singular multi-fractional order Lane–Emden system, Comp. Appl. Math., 39 (2020), 1–18. https://doi.org/10.1007/s40314-020-01350-0 doi: 10.1007/s40314-020-01350-0
    [52] H. Günerhan, E. Çelik, Analytical and approximate solutions of fractional partial differential-algebraic equations, Appl. Math. Nonlinear Sci., 5 (2020), 109–120. https://doi.org/10.2478/amns.2020.1.00011
    [53] K. A. Touchent, Z. Hammouch, T. Mekkaoui, A modified invariant subspace method for solving partial differential equations with non-singular kernel fractional derivatives, Appl. Math. Nonlinear Sci., 5 (2020), 35–48. https://doi.org/10.2478/amns.2020.2.00012 doi: 10.2478/amns.2020.2.00012
    [54] Z. Sabir, M. A. Z. Raja, J. L. Guirao, T. Saeed, Meyer wavelet neural networks to solve a novel design of fractional order pantograph Lane-Emden differential model, Chaos Solitons Fract., 152 (2021), 1–14. https://doi.org/10.1016/j.chaos.2021.111404 doi: 10.1016/j.chaos.2021.111404
    [55] E. İlhan, İ. O. Kıymaz, A generalization of truncated M-fractional derivative and applications to fractional differential equations, Appl. Math. Nonlinear Sci., 5 (2020), 171–188. https://doi.org/10.2478/amns.2020.1.00016 doi: 10.2478/amns.2020.1.00016
    [56] H. M. Baskonus, H. Bulut, T. A. Sulaiman, New complex hyperbolic structures to the lonngren-wave equation by using sine-gordon expansion method, Appl. Math. Nonlinear Sci., 4 (2019), 129–138. https://doi.org/10.2478/AMNS.2019.1.00013 doi: 10.2478/AMNS.2019.1.00013
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1520) PDF downloads(204) Cited by(4)

Article outline

Figures and Tables

Figures(7)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog