Research article

On Hadamard inequalities for refined convex functions via strictly monotone functions

  • Received: 23 July 2022 Revised: 22 August 2022 Accepted: 31 August 2022 Published: 13 September 2022
  • MSC : 26D10, 31A10, 26A33

  • In this paper, we define refined $ (\alpha, h-m) $-convex function with respect to a strictly monotone function. This function provides refinements of various well-known classes of functions for specific strictly monotone functions. By applying definition of this new function we prove the Hadamard inequalities for Riemann-Liouville fractional integrals. These inequalities give the refinements of fractional Hadamard inequalities for convex, $ (\alpha, m) $-convex, $ (h-m) $-convex, $ (s, m) $-convex, $ h $-convex and many other related well-known classes of functions implicitly. Also, Hadamard type inequalities for $ k $-fractional integrals are given.

    Citation: Moquddsa Zahra, Dina Abuzaid, Ghulam Farid, Kamsing Nonlaopon. On Hadamard inequalities for refined convex functions via strictly monotone functions[J]. AIMS Mathematics, 2022, 7(11): 20043-20057. doi: 10.3934/math.20221096

    Related Papers:

  • In this paper, we define refined $ (\alpha, h-m) $-convex function with respect to a strictly monotone function. This function provides refinements of various well-known classes of functions for specific strictly monotone functions. By applying definition of this new function we prove the Hadamard inequalities for Riemann-Liouville fractional integrals. These inequalities give the refinements of fractional Hadamard inequalities for convex, $ (\alpha, m) $-convex, $ (h-m) $-convex, $ (s, m) $-convex, $ h $-convex and many other related well-known classes of functions implicitly. Also, Hadamard type inequalities for $ k $-fractional integrals are given.



    加载中


    [1] G. A. Anastassiou, Generalized fractional Hermite-Hadamard inequalities involving $m$-convexity and $(s, m)$-convexity, Facta Univ. Ser. Math. Inform., 28 (2013), 107–126.
    [2] M. K. Bakula, M. E. Özdemir, J. Pečarić, Hadamard type inequalities for $m$-convex and $(\alpha, m)$-convex functions, J. Inequal. Pure Appl. Math., 9 (2008), 1–25.
    [3] S. S. Dragomir, J. Pečariç, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335–341.
    [4] G. Farid, A. U. Rehman, Q. U. Ain, $k$-fractional integral inequalities of Hadamard type for $(h-m)$-convex functions, Comput. Methods Differ. Equ., 8 (2020), 119–140. https://doi.org/10.22034/CMDE.2019.9462 doi: 10.22034/CMDE.2019.9462
    [5] E. Set, B. Çelik, Fractional Hermite-Hadamard type inequalities for quasi-convex functions, Ordu Univ. J. Sci. Tech., 6 (2016), 137–149.
    [6] A. W. Roberts, D. E. Varberg, Convex functions, New York: Academic Press, 1973.
    [7] J. E. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Academic Press, 1992.
    [8] M. Bombardelli, S. Varošanec, Properties of $h$-convex functions related to the Hermite-Hadamard-Fejér inequalities, Comput. Math. Appl., 58 (2009), 1869–1877. https://doi.org/10.1016/j.camwa.2009.07.073 doi: 10.1016/j.camwa.2009.07.073
    [9] H. Hudzik, L. Maligranda, Some remarks on $s$-convex functions, Aequationes Math., 48 (1994), 100–111. https://doi.org/10.1007/BF01837981 doi: 10.1007/BF01837981
    [10] V. G. Mihesan, A generalization of the convexity, In: Seminar on functional equations, approximation and convexity, Romania: Cluj-Napoca, 1993.
    [11] S. Mehmood, G. Farid, Fractional integral inequalities for exponentially $m$-convex functions, Open J. Math. Sci., 4 (2020), 78–85. https://doi.org/10.30538/oms2020.0097 doi: 10.30538/oms2020.0097
    [12] M. E. Özdemir, Some inequalities for the $s$-Godunova-Levin type functions, Math. Sci., 9 (2015), 27–32. https://doi.org/10.1007/s40096-015-0144-y doi: 10.1007/s40096-015-0144-y
    [13] T. Yan, G. Farid, H. Yasmeen, C. Y. Jung, On Hadamard type fractional inequalities for Riemann-Liouville integrals via a generalized convexity, Fractal Fract., 6 (2022), 1–15. https://doi.org/10.3390/fractalfract6010028 doi: 10.3390/fractalfract6010028
    [14] M. Zahra, M. Ashraf, G. Farid, K. Nonlaopon, Some new kinds of fractional integral inequalities via refined $(\alpha, h-m)$-convex function, Math. Probl. Eng., 2021 (2021), 1–15. https://doi.org/10.1155/2021/8331092 doi: 10.1155/2021/8331092
    [15] G. H. Toader, Some generalization of convexity, Proc. Colloq. Approx. Optim., 1984,329–338.
    [16] S. M. Yuan, Z. M. Liu, Some properties of $\alpha$-convex and $\alpha$-quasiconvex functions with respect to $n$-symmetric points, Appl. Math. Comput., 188 (2007), 1142–1150. https://doi.org/10.1016/j.amc.2006.10.060 doi: 10.1016/j.amc.2006.10.060
    [17] S. Hussain, M. I. Bhatti, M. Iqbal, Hadamard-type inequalities for $s$-convex functions I, Punjab Univ. J. Math., 41 (2009), 51–60.
    [18] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [19] S. Mubeen, G. M. Habibullah, $k$-fractional integrals and applications, Int. J. Contemp. Math. Sci., 7 (2012), 89–94.
    [20] M. E. Özdemir, M. Avcı, E. Set, On some inequalities of Hermite-Hadamard type via $m$-convexity, Appl. Math. Lett., 23 (2010), 1065–1070. https://doi.org/10.1016/j.aml.2010.04.037 doi: 10.1016/j.aml.2010.04.037
    [21] M. A. Latif, S. S. Dragomir, On Hermite-Hadamard type integral inequalities for $n$-times differentiable log-preinvex functions, Filomat, 29 (2015), 1651–1661. https://doi.org/10.2298/FIL1507651L doi: 10.2298/FIL1507651L
    [22] W. Sudsutad, S. K. Ntouyas, J. Tariboon, Fractional integral inequalities via Hadamard's fractional integral, Abstr. Appl. Anal., 2014 (2014), 1–11. https://doi.org/10.1155/2014/563096 doi: 10.1155/2014/563096
    [23] M. E. Özdemir, M. Avcı-Ardıç, H. Kavurmaci-Önalan, Hermite-Hadamard type inequalities for $s$-convex and $s$-concave functions via fractional integrals, Turkish J. Sci., 1 (2016), 28–40.
    [24] M. Tunç, E. Göv, Ü. Şanal, On $tgs$-convex function and their inequalities, Facta Univ. Ser. Math. Inform., 30 (2015), 679–691.
    [25] G. Farid, M. Zahra, Y. C. Kwun, S. M. Kang, Fractional Hadamard-type inequalities for refined $(\alpha, h-m)-p$-convex function and their consequences, Math. Methods Appl. Sci., 2022, In press.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1267) PDF downloads(73) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog