Research article Special Issues

New analytical method of solution to a nonlinear singular fractional Lane–Emden type equation

  • Received: 11 August 2022 Revised: 29 August 2022 Accepted: 30 August 2022 Published: 05 September 2022
  • MSC : 26A33, 28A80, 34A08, 34A09

  • We consider a nonlinear singular fractional Lane–Emden type differential equation

    $ {}^{LC}\mathcal{D}^\alpha_{a^+}\varphi(t)+\frac{\lambda}{t^{\alpha-\beta}}\, \, {}^{LC}\mathcal{D}^\beta_{a^+}\varpi(t, \varphi(t)) = 0, \, \, 0<\beta<\alpha<1, \, \, 0< a<t\leq T, $

    with an initial condition $ \varphi(a) = \nu $ assumed to be bounded and non-negative, $ \varpi:[a, T]\times\mathbb{R}\rightarrow \mathbb{R} $ a Lipschitz continuous function, and $ {}^{LC}\mathcal{D}^\alpha_{a^+}, {}^{LC}\mathcal{D}^\beta_{a^+} $ are Liouville–Caputo derivatives of orders $ 0 < \alpha, \beta < 1 $. A new analytical method of solution to the nonlinear singular fractional Lane–Emden type equation using fractional product rule and fractional integration by parts formula is proposed. Furthermore, we prove the existence and uniqueness and the growth estimate of the solution. Examples are given to illustrate our results.

    Citation: McSylvester Ejighikeme Omaba. New analytical method of solution to a nonlinear singular fractional Lane–Emden type equation[J]. AIMS Mathematics, 2022, 7(10): 19539-19552. doi: 10.3934/math.20221072

    Related Papers:

  • We consider a nonlinear singular fractional Lane–Emden type differential equation

    $ {}^{LC}\mathcal{D}^\alpha_{a^+}\varphi(t)+\frac{\lambda}{t^{\alpha-\beta}}\, \, {}^{LC}\mathcal{D}^\beta_{a^+}\varpi(t, \varphi(t)) = 0, \, \, 0<\beta<\alpha<1, \, \, 0< a<t\leq T, $

    with an initial condition $ \varphi(a) = \nu $ assumed to be bounded and non-negative, $ \varpi:[a, T]\times\mathbb{R}\rightarrow \mathbb{R} $ a Lipschitz continuous function, and $ {}^{LC}\mathcal{D}^\alpha_{a^+}, {}^{LC}\mathcal{D}^\beta_{a^+} $ are Liouville–Caputo derivatives of orders $ 0 < \alpha, \beta < 1 $. A new analytical method of solution to the nonlinear singular fractional Lane–Emden type equation using fractional product rule and fractional integration by parts formula is proposed. Furthermore, we prove the existence and uniqueness and the growth estimate of the solution. Examples are given to illustrate our results.



    加载中


    [1] J. H. Lane, On the theoretical temperature of the Sun; under the hypothesis of a gaseous mass maintaining its volume by its internal heat and depending on the laws of gases known to terrestrial experiment, Amer. J. Sci. Arts., 50 (1870), 57–74. https://doi.org/10.2475/ajs.s2-50.148.57 doi: 10.2475/ajs.s2-50.148.57
    [2] Gaskugeln, R. Emden, Tuebner, Leipzig and Berlin, 1907.
    [3] M. S. Mechee, N. Senu, Numerical study of fractional differential equations of Lane–Emden type by method of collocation, Appl. Math., 3 (2012), 851–856. https://doi.org/ 10.4236/am.2012.38126 doi: 10.4236/am.2012.38126
    [4] A. Saadatmandi, A. Ghasemi-Nasrabady, A. Eftekhari, Numerical study of singular fractional Lane–Emden type equations arising in astrophysics, J. Astrophys. Astr., 40 (2019), 12. https://doi.org/10.1007/s12036-019-9587-0 doi: 10.1007/s12036-019-9587-0
    [5] R. Saadeh, A. Burqan, A. El-Ajou, Reliable solutions to fractional Lane–Emden equations via Laplace transform and residual error function, Alex. Eng. J., 61 (2022), 10551–10562. https://doi.org/10.1016/j.aej.2022.04.004 doi: 10.1016/j.aej.2022.04.004
    [6] Z. Sabir, H. A. Wahab, M. Umar, M. G. Sakar, M. A. Z. Raja, Novel design of Morlet wavelet neutral network for solving second order Lane–Emden equation, Math. Comput. Simulat., 172 (2020), 1–14. https://doi.org/10.1016/j.matcom.2020.01.005 doi: 10.1016/j.matcom.2020.01.005
    [7] Z. Sabir, M. G. Sakar, M. Yeskindirova, O. Sadir, Numerical investigations to design a novel model based on the fifth order system of Emden–Fowler equations, Theor. Appl. Mech. Lett., 10 (2020), 333–342. https://doi.org/10.1016/j.taml.2020.01.049 doi: 10.1016/j.taml.2020.01.049
    [8] Z. Sabir, F. Amin, D. Pohl, J. L. G. Guirao, Intelligence computing approach for solving second order system of Emden–Fowler model, J. Intell. Fuzzy Syst., 38 (2020), 7391–7406. https://doi.org/10.3233/JIFS-179813 doi: 10.3233/JIFS-179813
    [9] M. A. Abdelkawy, Z. Sabir, J. L. G. Guirao, T. Saeed, Numerical investigations of a new singular second-order nonlinear coupled functional Lane–Emden model, Open Phys., 18 (2020), 770–778. https://doi.org/10.1515/phys-2020-0185 doi: 10.1515/phys-2020-0185
    [10] Z. Sabir, M. A. Z. Raja, D. Le, A. A. Aly, A neuro-swarming intelligent heuristic for second-order nonlinear Lane–Emden multi-pantograph delay differential system, Complx. Intell. Syst., 8 (2022), 1987–2000. https://doi.org/10.1007/s40747-021-00389-8 doi: 10.1007/s40747-021-00389-8
    [11] E. H. Doha, W. M. Abd-Elhameed, Y. H. Youssri, Second kind Chebyshev operational matrix algorithm for solving differential equations of Lane–Emden type, New Astron., 23-24 (2013), 113–117. https://doi.org/10.1016/j.newast.2013.03.002 doi: 10.1016/j.newast.2013.03.002
    [12] W. M. Abd-Elhameed, Y. Youssri, E. H. Doha, New solutions for singular Lane–Emden equations arising in astrophysics based on shifted ultraspherical operational matrices of derivatives, Comput. Methods Equ., 2 (2014), 171–185. https://doi.org/20.1001.1.23453982.2014.2.3.4.5
    [13] H. Singh, H. M. Srivastava, D. Kumar, A reliable algorithm for the approximate solution of the nonlinear Lane–Emden type equations arising in astrophysics, Numer. Methods Part. Differ. Equ., 34 (2018), 1524–1555. https://doi.org/10.1002/num.22237 doi: 10.1002/num.22237
    [14] M. Izadi, H. M. Srivastava, An efficient approximation technique applied to a non-linear Lane–Emden pantograph delay differential model, Appl. Math. Comput., 401 (2021), 1–10. https://doi.org/10.1016/j.amc.2021.126123 doi: 10.1016/j.amc.2021.126123
    [15] Y. H. Youssri, W. M. Abd-Elhammed, E. H. Doha, Ultraspherical wavelets methods for solving Lane–Emden type equations, Rom. J. Phys., 60 (2015), 1298–1314.
    [16] M. Abdelhakem, Y. H. Youssri, Two spectral Legendre's derivative algorithms for Lane–Emden, Bratu equations, and singular perturbed problems, Appl. Numer. Math., 169 (2021), 243–255. https://doi.org/10.1016/j.apnum.2021.07.006 doi: 10.1016/j.apnum.2021.07.006
    [17] N. S. Malagi, P. Veeresha, B. C. Prasannakumara, G. D. Prasanna, D. G. Prakasha, A new computational technique for the analytic treatment of time fractional Emden–Fowler equations, Math. Comput. Simulat., 190 (2021), 362–376. https://doi.org/10.1016/j.matcom.2021.05.030 doi: 10.1016/j.matcom.2021.05.030
    [18] C. Baishya, P. Veeresha, Laguerre polynomial-based operational matrix of integration for solving fractional differential equations with non-singular kernel, P. Roy. Soc. A., 477 (2021), 22–53. https://doi.org/10.1098/rspa.2021.0438 doi: 10.1098/rspa.2021.0438
    [19] D. G. Prakasha, N. S. Malagi, P. Veeresha, New approach for fractional Schrödinger‐Boussinesq equations with Mittag‐Leffler kernel, Math. Methods Appl. Sci., 43 (2020), 9654–9670. https://doi.org/10.1002/mma.6635 doi: 10.1002/mma.6635
    [20] P. Veeresha, N. S. Malagi, D. G. Prakasha, H. M. Baskonus, An efficient technique to analyze the fractional model of vector-borne diseases, Phys. Scripta., 97 (2022), 054004. https://doi.org/10.1088/1402-4896/ac607b doi: 10.1088/1402-4896/ac607b
    [21] Z. Sabir, M. A. Z. Raja, J. L. G. Guirao, A novel design of fractional Meyer wavelet neutral networks with application to the nonlinear singular fractional fractional Lane–Emden systems, Alex. Eng. J., 60 (2021), 2641–2659. https://doi.org/10.1016/j.aej.2021.01.004 doi: 10.1016/j.aej.2021.01.004
    [22] R. O. Awonusika, Analytical solutions of a class of fractional Lane–Emden equation: A power series method, Int. J. Appl. Comput. Math., 8 (2022), 155. https://doi.org/10.1007/s40819-022-01354-w doi: 10.1007/s40819-022-01354-w
    [23] M. Izadi, H. M. Srivastava, Generalized bessel quasilinearization technique applied to Bratu and Lane–Emden type equations of arbitrary order, Fractal Fract., 5 (2021), 1–27. https://doi.org/10.3390/fractalfract5040179 doi: 10.3390/fractalfract5040179
    [24] C. F. Wei, Application of the homotopy perturbation method for solving fractional Lane–Emden type equation, Ther. Sci., 23 (2019), 2237–2244. https://doi.org/10.2298/TSCI1904237W doi: 10.2298/TSCI1904237W
    [25] B. Caruntu, C. Bota, M. Lapadat, M. S. Pasca, Polynomial least squares method for fractional Lane–Emden equations, Symmetry, 11 (2019), 479. https://dx.doi.org/10.3390/sym11040479 doi: 10.3390/sym11040479
    [26] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, Elsevier, 2006. https://dx.doi.org/10.1016/S0304-0208(06)80001-0
    [27] R. Almeida, A gronwall inequality for a general Caputo fractional operator, Math. Inequal. Appl., 20 (2017), 1089–1105. https://doi.org/10.7153/mia-2017-20-70 doi: 10.7153/mia-2017-20-70
    [28] T. Abdeljawad, On Riemann and Caputo fractional differences, Comput. Math. Appl., 62 (2011), 1602–1611. https://doi.org/10.1016/j.camwa.2011.03.036 doi: 10.1016/j.camwa.2011.03.036
    [29] H. M. Srivastava, J. Choi, Zeta and q-zeta functions and associated series and integrals, Elsevier, 2012. https://doi.org/10.1016/c2010-0-67023-4
    [30] N. M. Temme, Asymptotic inversion of the incomplete beta function, J. Comput. Appl. Math., 41 (1992), 145–157. https://doi.org/10.1016/0377-0427(92)90244-R doi: 10.1016/0377-0427(92)90244-R
    [31] R. B. Paris, Chapter 8: Incomplete Gamma and related functions, University of Abertay Dundee, 2022. Available from: https://dlmf.nist.gov/8.17.
    [32] R. P. Agarwal, S. Deng, W. Zhang, Generalization of a retarded Gronwall-like inequality and its applications, Appl. Math. Comput., 165 (2005), 599–612. https://doi.org/10.1016/j.amc.2004.04.067 doi: 10.1016/j.amc.2004.04.067
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1442) PDF downloads(50) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog