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Abstract: We consider a nonlinear singular fractional Lane–Emden type differential equation

LCDα
a+ϕ(t) +

λ

tα−β
LCD

β
a+$(t, ϕ(t)) = 0, 0 < β < α < 1, 0 < a < t ≤ T,

with an initial condition ϕ(a) = ν assumed to be bounded and non-negative, $ : [a,T ] × R → R a
Lipschitz continuous function, and LCDα

a+ ,LCD
β
a+ are Liouville–Caputo derivatives of orders 0 < α, β <

1. A new analytical method of solution to the nonlinear singular fractional Lane–Emden type equation
using fractional product rule and fractional integration by parts formula is proposed. Furthermore, we
prove the existence and uniqueness and the growth estimate of the solution. Examples are given to
illustrate our results.
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1. Introduction

In 1870, an American astrophysicist by name Jonathan Homer Lane first published the
Lane–Emden type equations [1] and were further explored by a Swiss theoretical physicist
(astrophysicist and meterologist) Robert Emden in 1907 [2]. They used the equations to describe the
internal structure of gaseous spheres.

The standard form of Lane–Emden differential equation is given by [3]{
y′′(t) + λ

t y′(t) + f (t, y(t)) = g(t), 0 < t ≤ 1, λ ≥ 0,
y(0) = A, y′(0) = B.

(1.1)
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This equation is a singular initial value problems relating to second order differential equations, used
to describe the theory of singular boundary value problem. The Lane–Emden equation best depicts
and describes a wide range of phenomena in mathematical physics, chemistry, and astrophysics,
specifically in the areas of theory of stellar structure, thermal explosion, the thermal behaviour of a
spherical cloud of gas, isothermal gas spheres and thermionic currents [4, 5]. For recent stochastic
model applications, the authors in [6] adopted a design of Morlet wavelet neutral network to find a
solution of second order Lane–Emden equation. Other stochastic models for singular Lane–Emden
equations include [7–10].

Next, we review some other numerical and analytical methods of solutions to both the standard and
fractional Lane–Emden type equations in literature. In 2013, the authors [11] constructed a second
kind Chebyshev operational matrix algorithm to give numerical solutions of a class of linear and
nonlinear Lane–Emden type singular initial value problems; in 2014, the same authors in [12] used
shifted ultraspherical operational matrices of derivatives to give solutions of singular Lane–Emden
equations arising in astrophysics; and in 2018, another set of authors in [13] developed an algorithm
based on operational matrix of integration for Jacobi polynomials and collocation method to obtain an
approximate solution of nonlinear Lane–Emden type equations arising in astrophysics. In a recent
development, the authors in [14] were able to successfully propose a computationally effective
approximation technique based on Bessel matrix representation and collocation points to find
numerical solution of a nonlinear, singular second-order Lane–Emden pantograph delay differential
equation. Other recent numerical methods of solving Lane–Emden type equation include the use of
ultraspherical wavelets methods [15], the use of spectral Legendre’s derivative algorithms [16], etc.

Now, one could ask, why the fractional Lane–Emden differential equation? It is known that
fractional derivatives are needed in order to best describe the dynamics of materials in fractal
medium, to capture the long-term memory effect and long-range interactions of systems, the apparent
importance of fractional derivatives in modeling mechanical and electrical properties of real
materials, and in the description of properties of gases, liquids and rocks, see [17–20] and their
references. Consequently, the authors [3] in 2012, generalized Eq (1.1) to a nonlinear-singular
fractional Lane–Emden system{

Dαy(t) + λ
tα−β Dβy(t) + f (t, y(t)) = g(t), 0 < t ≤ 1,

y(0) = c0, y(1) = d0,

where λ ≥ 0, 0 < α ≤ 2, 0 < β ≤ 1, f : [0, 1] × R → R, g : [0, 1] → R are continuous, A, B constants
and Dα,Dβ are Riemann–Liouville fractional derivatives. The fractional Lane–Emden equation is of a
significant importance in the accurate modeling of real-life phenomena. For example, the nonlinear
singular fractional Lane–Emden systems have been applied in a novel design of fractional Meyer
wavelet neutral networks [21].

Many researchers have employed different approaches and methods in formulating the analytical
solution to the fractional Lane–Emden equations. Recently in 2022, the author in [22] studied
analytical solution to a class of fractional Lane–Emden equation using a power series method.
Another analytical solution involves the method of Laplace transform [5]. The author in [3] imployed
a numerical method of collocation to give approximate solution of the fractional Lane–Emden
equation. Some other numerical methods have also been developed to give approximate solutions of
fractional order Lane–Emden-type differential equations. These methods include matrix method in
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terms of generalized Bessel functions and based on suitable collocation points [23], the homotopy
perturbation using Adomian decomposition method [24] and Polynomial Least Square Method
(PLSM) which gives an analytical approximate polynomial solution of fractional Lane–Emden
differential equations [25].

In this paper, as a motivation, we seek to find a simplified and an alternative formulation of analytical
solution to a fractional Lane–Emden type equation and consider the following{

LCDα
a+ϕ(t) + λ

tα−β
LC
D

β
a+$(t, ϕ(t)) = 0, 0 < a < t ≤ T,

ϕ(a) = ν,
(1.2)

where 0 < β < α < 1, LCDα
a+ and LCD

β
a+ are Liouville–Caputo fractional derivatives, and $ : [a,T ] ×

R→ R is Lipschitz continuous. In contrast to the known fractional Lane–Emden equations, Eq (1.2) is
a singular initial value nonlinear fractional Lane–Emden type equation relating to first order differential
equations.

Remark 1.1. (1) The novelty of the paper is that it is the first to apply this analytical method in
solving nonlinear singular fractional Lane–Emden type equation. The advantage of using the
fractional product rule and fractional integration by parts formula is that it is simple,
straightforward and less complicated; the only downside is that the method was unable to
capture all the usual order 0 < α ≤ 2, because of the positive requirement of 1 − α in Γ(1 − α) in
our formulation.

(2) Our results are performed at approximation of the singular point since we have some terms in
our solution kernel that are not defined at 0.

The paper is organized as follows. Section 2 contains the preliminaries and formulation of the
solution; and in Section 3, we give the main results of the paper. Section 4 contains some examples to
illusrate our main results and Section 5 provides a short summary of the paper.

2. Preliminaries

Here, we present definitions of some basic concepts. See [26] for more concepts on fractional
calculus.

Definition 2.1 ( [27]). Let a < b be positive real numbers and f : [a, b]→ R be an integrable function.
The left sided Katugampola fractional integral of order α and parameter ρ is given by

I
α,ρ
a+ f (t) =

ρ1−α

Γ(α)

∫ t

a
sρ−1(tρ − sρ)α−1 f (s)ds.

Remark 2.2. For ρ = 1, one gets the Riemann–Liouville fractional integral of order α > 0 of a function
f : [a, b]→ R given by

Iαa+ f (t) =
1

Γ(α)

∫ t

a
(t − s)α−1 f (s)ds, (2.1)

provided that the integral exists and finite.
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Definition 2.3 ( [28]). The Riemann–Liouville fractional derivative of order 0 < α < 1 of a function
f : [a, b]→ R is given by

Dα
a+ f (t) =

1
Γ(1 − α)

d
dt

∫ t

a
(t − s)−α f (s)ds,

provided that the integral exists and finite.

Definition 2.4 ( [27]). Let a < b be positive real numbers, ρ > 0, α ∈ R+ and n ∈ N such that
n − 1 < α < n, and f : [a, b] → R is a class of Cn function. The left-sided Caputo–Katugampola
fractional derivative of order α and parameter ρ is defined by

CD
α,ρ
a+ f (t) = I

α,ρ
a+

(
t1−ρ d

dt

)n

f (t) =
ρ1−n+α

Γ(n − α)

∫ t

a
sρ−1(tρ − sρ)α−1

(
t1−ρ d

ds

)n

f (s)ds.

Remark 2.5. For n = 1 and ρ = 1, then the Liouville–Caputo fractional derivative of order 0 < α < 1
of a function f : [a, b]→ R is given by

LCDα
a+ f (t) =

1
Γ(1 − α)

∫ t

a
(t − s)−α f ′(s)ds,

provided that the integral exists and finite.

Lemma 2.6 ( [28]). The relationship between the Liouville–Caputo and Riemann–Liouville derivatives
is

LCDα
a+ f (t) = Dα

a+ f (t) −
n−1∑
k=0

(t − a)k−α

Γ(k − α + 1)
f (k)(a).

When n = 1, it implies that k = 0 and

LCDα
a+ f (t) = Dα

a+ f (t) −
(t − a)−α

Γ(1 − α)
f (a).

For an example, if a function f : [a, b]→ R is given by f (t) = tν. Then

Dα
a+ f (t) =

Γ(ν + 1)
Γ(ν − α + 1)

tν−α.

Theorem 2.7 ( [27]). Let y ∈ Cn[a, b], then we have

I
α,ρ
a+

CD
α,ρ
a+ y(t) = y(t) −

n−1∑
k=0

ρ−k

k!
(tρ − aρ)ky(k)(a).

For a function y ∈ C[a, b] and ρ = 1, we have

Iαa+
LCDα

a+y(t) = y(t) − y(a). (2.2)

The following is a generalized fractional integration by parts formula:
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Theorem 2.8 ( [27]). Let f ∈ C[a, b] and g ∈ Cn[a, b] be two functions. Then∫ b

a
f (t)CD

α,ρ
a+ g(t)dt =

∫ b

a
tρ−1g(t)Dα,ρ

b− (t1−ρ) f (t)dt

+

[ n−1∑
k=0

(
− t1−ρ d

dt

)k

In−α,ρ
b− (t1−α f (t))g(n−k−1)(t)

]t=b

t=a
.

In particular, for n = 1 and ρ = 1,∫ b

a
f (t)LCDα

a+g(t)dt =

∫ b

a
g(t)Dα

b− f (t)dt. (2.3)

Definition 2.9 ( [29, 30]). For µ, υ > 0, one defines the incomplete beta function by

B(τ, µ, υ) =

∫ τ

0
tµ−1(1 − t)υ−1dt, τ ∈ [0, 1].

It also has a representation in terms of a hypergeometric function given by

B(τ, µ, υ) =
τµ

µ
2F1(µ, 1 − υ; µ + 1; τ).

Definition 2.10 ( [31]). The regularized incomplete beta function is defined by

I(τ, µ, υ) =
B(τ, µ, υ)
B(µ, υ)

=
1

B(µ, υ)

∫ τ

0
τµ−1(1 − τ)υ−1dτ,

satisfying the following properties:

• I(τ, µ, υ) = I(τ, µ + 1, υ − 1) +
τµ(1−τ)υ−1

µB(µ,υ) ,

• I(τ, µ, υ) = I(τ, µ + 1, υ + 1) − τµ(1−τ)υ−1

υB(µ,υ) ,

• I(τ, µ, υ) = I(τ, µ + 1, υ) +
τµ(1−τ)υ

µB(µ,υ) ,

• I(τ, µ, υ) = I(τ, µ, υ + 1) − τµ(1−τ)υ

υB(µ,υ) ,

• I(τ, µ, υ) + I(1 − τ, υ, µ) = 1,
• I(1, µ, υ) = 1 and I(τ, µ, υ) ∈ [0, 1].

Here, we make sense of the solution to Eq (1.2).

Lemma 2.11. The solution to fractional Lane–Emden type equation (1.2) is given by

ϕ(t) = ν +
λ

Γ(α − β)

∫ t

a
(t − s)α−β−1sβ−α$(s, ϕ(s))ds − λ

Γ(β − α + 1)
B(1 − α, α)

∫ t

a
(t − s)α−1s−α$(s, ϕ(s))ds.

Proof. Apply the fractional integral operator Iαa+ on both sides of Eq (1.2) to obtain

Iαa+

[
LCDα

a+ϕ(t)
]

+ Iαa+

[
λ

tα−β
LCD

β
a+$(t, ϕ(t))

]
= 0.
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From Eq (2.2) in Theorem 2.7 and Eq (2.1), we have

ϕ(t) − ϕ(a) +
λ

Γ(α)

∫ t

a

(t − s)α−1

sα−β
LCD

β
a+$(s, ϕ(s))ds = 0.

By Eq (2.3) in Theorem 2.8, we obtain

ϕ(t) − ϕ(a) +
λ

Γ(α)

∫ t

a
$(s, ϕ(s))Dβ

a+

(
(t − s)α−1sβ−α

)
ds = 0. (2.4)

Apply the product rule onDβ
a+

(
(t − s)α−1sβ−α

)
as follows

D
β
a+

(
(t − s)α−1sβ−α

)
= (t − s)α−1D

β
a+ sβ−α + sβ−αDβ

a+(t − s)α−1

= (t − s)α−1 Γ(β − α + 1)
Γ(β − α − β + 1)

sβ−α−β − sβ−α
Γ(α − 1 + 1)

Γ(α − 1 − β + 1)
(t − s)α−β−1

=
Γ(β − α + 1)

Γ(1 − α)
(t − s)α−1s−α −

Γ(α)
Γ(α − β)

(t − s)α−β−1sβ−α.

Therefore, from Eq (2.4), one gets

ϕ(t) − ϕ(a) +
Γ(β − α + 1)

Γ(1 − α)
λ

Γ(α)

∫ t

a
$(s, ϕ(s))(t − s)α−1s−αds

−
Γ(α)

Γ(α − β)
λ

Γ(α)

∫ t

a
$(s, ϕ(s))(t − s)α−β−1sβ−αds = 0.

Using the cosecant identity Γ(α)Γ(1 − α) = π csc(πα) = π
sin(πα) , we obatin

ϕ(t) − ϕ(a) + Γ(β − α + 1)
λ sin(πα)

π

∫ t

a
$(s, ϕ(s))(t − s)α−1s−αds

−
λ

Γ(α − β)

∫ t

a
$(s, ϕ(s))(t − s)α−β−1sβ−αds = 0.

Alternatively, by the property of Beta functions B(1 − α, α) =
Γ(1−α)Γ(α)
Γ(1−α+α) = Γ(1 − α)Γ(α), one writes the

solution as

ϕ(t) − ϕ(a) + Γ(β − α + 1)
λ

B(1 − α, α)

∫ t

a
$(s, ϕ(s))(t − s)α−1s−αds

−
λ

Γ(α − β)

∫ t

a
$(s, ϕ(s))(t − s)α−β−1sβ−αds = 0,

and the desired result follows. �

Now, we define the norm of ϕ by
‖ϕ‖ := sup

a≤t≤T
|ϕ(t)|.
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3. Main results

We start with the following global Lipschitz condition on $(., ϕ) as follows:

Condition 3.1. Let 0 < Lip$ < ∞, and for all x, y ∈ R, and t ∈ [a,T ], we have

|$(t, x) −$(t, y)| ≤ Lip$|x − y|. (3.1)

We set $(t, 0) = 0 for convenience only.

3.1. Existence and uniqueness result

The existence and uniqueness of solution to our Eq (1.2) will be proved by Banach’s fixed point
theorem. To begin, we define the operator

Aϕ(t) = ν +
λ

Γ(α − β)

∫ t

a
(t − s)α−β−1sβ−α$(s, ϕ(s))ds − λ

Γ(β − α + 1)
B(1 − α, α)

∫ t

a
(t − s)α−1s−α$(s, ϕ(s))ds,

(3.2)

and show that the fixed point of the operatorA gives the solution to Eq (1.2).

Lemma 3.2. Let ϕ be a solution to Eq (1.2) and suppose that Condition 3.1 holds. Then for β + 1 > α
and 0 < β < α < 1,

‖Aϕ‖ ≤ ν + c1λLip$‖ϕ‖, (3.3)

with positive constant

c1 :=
[ 1
Γ(α − β)

[
π csc(π(α − β)) + B

(
1 − α + β, α − β

)]
+

Γ(β − α + 1)
B(1 − α, α)

[
π csc(πα) + B

(
1 − α, α

)]]
< ∞.

Proof. We take absolute value of the Eq (3.2) to obtain

|Aϕ(t)| ≤ ν +
λ

Γ(α − β)

∫ t

a
(t − s)α−β−1sβ−α|$(s, ϕ(s))|ds + λ

Γ(β − α + 1)
B(1 − α, α)

∫ t

a
(t − s)α−1s−α|$(s, ϕ(s))|ds.

Applying Eq (3.1) of Condition 3.1, we have

|Aϕ(t)| ≤ ν +
λLip$

Γ(α − β)

∫ t

a
(t − s)α−β−1sβ−α|ϕ(s)|ds + λLip$

Γ(β − α + 1)
B(1 − α, α)

∫ t

a
(t − s)α−1s−α|ϕ(s)|ds

≤ ν +
λLip$

Γ(α − β)
‖ϕ‖

∫ t

a
(t − s)α−β−1sβ−αds + λLip$

Γ(β − α + 1)
B(1 − α, α)

‖ϕ‖

∫ t

a
(t − s)α−1s−αds

= ν +
λLip$

Γ(α − β)
‖ϕ‖

[
π csc(π(α − β)) − B

(a
t
, 1 − α + β, α − β

)]
+λLip$

Γ(β − α + 1)
B(1 − α, α)

‖ϕ‖
[
π csc(πα) − B

(a
t
, 1 − α, α

)]
≤ ν +

λLip$
Γ(α − β)

‖ϕ‖
[
π csc(π(α − β)) + B

(a
t
, 1 − α + β, α − β

)]
+λLip$

Γ(β − α + 1)
B(1 − α, α)

‖ϕ‖
[
π csc(πα) + B

(a
t
, 1 − α, α

)]
,
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where B(., ., .) is an incomplete Beta function. Now, applying the property of a regularized incomplete
Beta function I(z, a, b) ≤ 1 for all 0 < z < 1, we have B(z, a, b) = B(a, b)I(z, a, b) ≤ B(a, b). Thus, for
all 0 < a < t, we have

|Aϕ(t)| ≤ ν +
λLip$

Γ(α − β)
‖ϕ‖

[
π csc(π(α − β)) + B

(
1 − α + β, α − β

)]
+λLip$

Γ(β − α + 1)
B(1 − α, α)

‖ϕ‖
[
π csc(πα) + B

(
1 − α, α

)]
.

Taking supremum over t ∈ [a,T ] on both sides, we get

‖Aϕ‖ ≤ ν +
λLip$

Γ(α − β)
‖ϕ‖

[
π csc(π(α − β)) + B

(
1 − α + β, α − β

)]
+λLip$

Γ(β − α + 1)
B(1 − α, α)

‖ϕ‖
[
π csc(πα) + B

(
1 − α, α

)]
,

and the result follows. �

Lemma 3.3. Let ψ and ϕ be solutions to Eq (1.2) and suppose that Condition 3.1 holds. Then for
β + 1 > α and 0 < β < α < 1,

‖Aψ −Aϕ‖ ≤ c1λLip$‖ψ − ϕ‖. (3.4)

Proof. Since the proof follows same steps as the proof of Lemma 3.2, we omit the details to avoid
repetition. �

Theorem 3.4. Let β + 1 > α and 0 < β < α < 1; and suppose Condition 3.1 holds. Then there exists a
positive constant c1 such that for c1 <

1
λLip$

, Eq (1.2) has a unique solution.

Proof. By fixed point theorem, one has ϕ(t) = Aϕ(t). So, using Eq (3.3) of Lemma 3.2,

‖ϕ‖ = ‖Aϕ‖ ≤ ν + c1λLip$‖ϕ‖.

This gives ‖ϕ‖
[
1 − c1λLip$

]
≤ ν and therefore, ‖ϕ‖ < ∞ if and only if c1 <

1
λLip$

.

On the other hand, suppose ψ , ϕ are two solutions to Eq (1.2). Then, from Eq (3.4) of Lemma 3.3,
one obtains

‖ψ − ϕ‖ = ‖Aψ −Aϕ‖ ≤ c1λLip$‖ψ − ϕ‖.

Thus, ‖ψ − ϕ‖
[
1 − c1λLip$

]
≤ 0. But 1 − c1λLip$ > 0, it follows that ‖ψ − ϕ‖ < 0, which is a

contradiction and therefore, ‖ψ − ϕ‖ = 0. Hence, the existence and uniqueness result follows from
contraction principle. �

3.2. Upper growth bound

In 2005, Agarwal et al. in [32], presented the following retarded Gronwall-type inequality:

u(t) ≤ a(t) +

n∑
i=1

∫ bi(t)

bi(t0)
gi(t, s)wi(u(s))ds, t0 ≤ t < t1. (3.5)
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Theorem 3.5 (Theorem 2.1 of [32]). Suppose that the hypotheses of (Theorem 2.1 of [32]) hold and
u(t) is a continuous and nonnegative function on [t0, t1) satisfying (3.5). Then

u(t) ≤ W−1
n

[
Wn(rn(t)) +

∫ bn(t)

bn(t0)
max
t0≤τ≤t

gn(τ, s)ds
]
, t0 ≤ t ≤ T1,

where rn(t) is determined recursively by

r1(t) := a(t0) +

∫ t

t0
|a′(s)|ds,

ri+1 :=W−1
i

[
Wi(ri(t)) +

∫ bi(t)

bi(t0)
max
t0≤τ≤t

gi(τ, s)ds
]
, i = 1, ..., n − 1,

andWi(x, xi) :=
∫ x

xi

dz
wi(z)

.

Remark 3.6. Now, consider the case where n = 2. If

u(t) ≤ a(t) +

∫ b1(t)

b1(t0)
g1(t, s)w1(u(s))ds +

∫ b2(t)

b2(t0)
g2(t, s)w2(u(s))ds,

then

u(t) ≤ W−1
2

[
W2(r2(t)) +

∫ b2(t)

b2(t0)
max
t0≤τ≤t

g2(τ, s)ds
]
,

with r2(t) =W−1
1

[
W1(r1(t)) +

∫ b1(t)

b1(t0)
max
t0≤τ≤t

g1(τ, s)ds
]
.

Here, take w1(u(s)) = w2(u(s)) = u(s), b1(t0) = b2(t0) = t0 = a and b1(t) = b2(t) = t.

Thus, we estimate the upper growth bound on the solution.

Theorem 3.7. Given that Condition 3.1 holds. Then for all t ∈ [a,T ], a > 0 and c2, c3 > 0, we have

|ϕ(t)| ≤
ν

exp
(
c2(a − t)α−β + c3(a − t)α

) ,
with c2 =

λLip$
Γ(1+α−β)

1
aα−β , c3 = λLip$

Γ(β−α+1)
αB(1−α,α)

1
aα , for 0 < β < α < 1 and β + 1 > α.

Proof. From the proof of Lemma 3.2, it was obtained that

|ϕ(t)| ≤ ν +
λLip$

Γ(α − β)

∫ t

a
(t − s)α−β−1sβ−α|ϕ(s)|ds + λLip$

Γ(β − α + 1)
B(1 − α, α)

∫ t

a
(t − s)α−1s−α|ϕ(s)|ds

≤ ν +
λLip$

Γ(α − β)
sup
a≤s≤t

sβ−α
∫ t

a
(t − s)α−β−1|ϕ(s)|ds + λLip$

Γ(β − α + 1)
B(1 − α, α)

sup
a≤s≤t

s−α
∫ t

a
(t − s)α−1|ϕ(s)|ds.

Since sβ−α and s−α are both decreasing for 0 < β < α, we have

|ϕ(t)| ≤ ν +
λLip$

Γ(α − β)
aβ−α

∫ t

a
(t − s)α−β−1|ϕ(s)|ds + λLip$

Γ(β − α + 1)
B(1 − α, α)

a−α
∫ t

a
(t − s)α−1|ϕ(s)|ds.
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Let h(t) := |ϕ(t)|, for t ∈ [0,T ] to get

h(t) ≤ ν +
λLip$

Γ(α − β)
1

aα−β

∫ t

0
(t − s)α−β−1h(s)ds + λLip$

Γ(β − α + 1)
B(1 − α, α)

1
aα

∫ t

0
(t − s)α−1h(s)ds. (3.6)

Now, we apply Theorem 3.5 to (3.6). ForW2, we have that

W2(x, x2) =

∫ x

x2

dz
z

= ln x − ln x2.

For convenience, we take x2 = 1 andW2(x) = ln x with the inverseW−1
2 (x) = ex. Similarly,W1(x) =

ln x with its inverseW−1
1 (x) = ex.

Also, a(t) = ν and a′(t) = 0, so r1(t) = ν. Next, define non-negative functions g1, g2 : [a,T ] ×
[a,T ]→ R+ as follows:

g1(τ, s) :=
λLip$

Γ(α − β)
1

aα−β
(τ − s)α−β−1,

and

g2(τ, s) := λLip$
Γ(β − α + 1)
B(1 − α, α)

1
aα

(τ − s)α−1.

For a ≤ s < τ and given that α − β − 1 < 0, then g1 is continuous and decreasing, hence,

max
a≤τ≤t

g1(τ, s) =
λLip$

Γ(α − β)
1

aα−β
(a − s)α−β−1,

and we have

r2(t) = exp
[

ln(ν) +
λLip$

Γ(α − β)
1

aα−β

∫ t

a
(a − s)α−β−1ds

]
= exp

[
ln(ν) −

λLip$
Γ(α − β)

1
aα−β

(a − t)α−β

α − β

]
.

Also, for a ≤ s < τ, and for all α < 1, g2 is continuously decreasing, and

max
a≤τ≤t

g2(τ, s) = λLip$
Γ(β − α + 1)
B(1 − α, α)

1
aα

(a − s)α−1.

Thus,

h(t) ≤ exp
[

ln(r2(t)) + λLip$
Γ(β − α + 1)
B(1 − α, α)

1
aα

∫ t

a
(a − s)α−1ds

]
= exp

[
ln(ν) −

λLip$
Γ(1 + α − β)

1
aα−β

(a − t)α−β − λLip$
Γ(β − α + 1)
B(1 − α, α)

1
aα

(a − t)α

α

]
= ν exp

[
−

λLip$
Γ(1 + α − β)

(a − t)α−β

aα−β
− λLip$

Γ(β − α + 1)
αB(1 − α, α)

(a − t)α

aα

]
,

and this completes the proof. �
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4. Examples

Here, we give examples to illustrate Theorem 3.4.

(1) Let α = 3
5 and β = 2

5 and define the nonlinear Lipschitz continuous function $ : [a,T ] × R → R
by $(t, ϕ(t)) = sin(ϕ(t)) with Lipschitz constant Lip$ = 1. Then the fractional Lane–Emden type
equation  LCD

3
5
a+ϕ(t) + λ

5√t
LCD

2
5
a+ sin(ϕ(t)) = 0, 0 < a < t ≤ T,

ϕ(a) = ν,

has a unique solution whenever

c1 :=
1

Γ
(1

5

)[π csc
(
π

5

)
+ B

(4
5
,

1
5

)]
+

Γ
(4

5

)
B
( 2

5 ,
3
5

)[π csc
(3π

5

)
+ B

(2
5
,

3
5

)]
= 4.65692 <

1
λ
,

or for all λ such that 0 < λ < 0.214734.
(2) Suppose α = 2

3 and β = 1
3 and define $ : [a,T ]×R→ [0,∞) by $(t, ϕ(t)) = |ϕ(t)| with Lip$ = 1.

Then the fractional Lane–Emden type equation LCD
2
3
a+ϕ(t) + λ

3√t
LCD

1
3
a+ |ϕ(t)| = 0, 0 ≤ a < t ≤ T,

ϕ(a) = ν,

has a unique solution for

c1 :=
1

Γ
(1

3

)[π csc
(
π

3

)
+ B

(2
3
,

1
3

)]
+

Γ
(2

3

)
B
( 1

3 ,
2
3

)[π csc
(2π

3

)
+ B

(1
3
,

2
3

)]
= 5.41648 <

1
λ
,

or for all λ in 0 < λ < 0.184622.

5. Conclusions

A new analytical technique of solution to a nonlinear singular fractional Lane–Emden type
differential equation which involves the use of fractional product rule and fractional integration by
parts formula applying the fractional integral operator was considered. Our proposed analytical
method is easier and straightforward to apply when compared to other analytical methods of
solutions. Furthermore, we study the estimation of the upper growth bound (exponential growth in
time) of the solution using retarded Gronwall-type inequality, and the existence and uniqueness of
solution to the nonlinear fractional Lane–Emden type differential equation using Banach’s fixed point
theorem. For further studies, one can investigate the asymptotic behaviour of the solution, estimate
the lower growth bound of the solution, the continuous dependence on the initial condition and the
stability of the solution. Moreso, one can seek to extend this method for the singular IVPs relating to
second order differential equation, that is, for 0 < α ≤ 2.
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