Research article

Robust stabilization for uncertain saturated systems with multiple time delays

  • Received: 20 May 2022 Revised: 11 August 2022 Accepted: 15 August 2022 Published: 30 August 2022
  • MSC : 93D09

  • This paper is concerned with the robust stabilization problem for uncertain saturated linear systems with multiple discrete delays. First of all, a new distributed-delay-dependent polytopic approach is proposed, and a new type of Lyapunov-Krasovskii functional is constructed. Then, by further incorporating some integral inequalities, both stabilization and robust stabilization conditions are proposed in terms of linear matrix inequalities under which the closed-loop systems are asymptotically stable for admissible initial conditions. Finally, a simulation example is given to illustrate the feasibility and advantages of the obtained results.

    Citation: Yuzhen Chen, Haoxin Liu, Rui Dong. Robust stabilization for uncertain saturated systems with multiple time delays[J]. AIMS Mathematics, 2022, 7(10): 19180-19201. doi: 10.3934/math.20221053

    Related Papers:

  • This paper is concerned with the robust stabilization problem for uncertain saturated linear systems with multiple discrete delays. First of all, a new distributed-delay-dependent polytopic approach is proposed, and a new type of Lyapunov-Krasovskii functional is constructed. Then, by further incorporating some integral inequalities, both stabilization and robust stabilization conditions are proposed in terms of linear matrix inequalities under which the closed-loop systems are asymptotically stable for admissible initial conditions. Finally, a simulation example is given to illustrate the feasibility and advantages of the obtained results.



    加载中


    [1] Q. Gao, N. Olgac, Stability analysis for LTI systems with multiple time delays using the bounds of its imaginary spectra, Syst. Control Lett., 102 (2017), 112–118. https://doi.org/10.1016/j.sysconle.2017.02.003 doi: 10.1016/j.sysconle.2017.02.003
    [2] H. Wu, Eigenstructure assignment-based robust stability conditions for uncertain systems with multiple time-varying delays, Automatica, 33 (1997), 97–102. https://doi.org/10.1016/S0005-1098(96)00134-3 doi: 10.1016/S0005-1098(96)00134-3
    [3] F. Mazenc, M. Malisoff, S. I. Niculescu, Stability analysis for systems with time-varying delay: Trajectory based approach, 2015 54th IEEE Conference on Decision and Control (CDC), 2015, 1811–1816. https://doi.org/10.1109/CDC.2015.7402473
    [4] C. Wang, Q. Yang, T. Jiang, N. Li, Synchronization analysis of a class of neural networks with multiple time delays, J. Math., 2021 (2021), 5573619. https://doi.org/10.1155/2021/5573619 doi: 10.1155/2021/5573619
    [5] F. Milano, Small-signal stability analysis of large power systems with inclusion of multiple delays, IEEE Trans. Power Syst., 31 (2016), 3257–3266. https://doi.org/10.1109/TPWRS.2015.2472977 doi: 10.1109/TPWRS.2015.2472977
    [6] Y. Sun, Y. Wang, Z. Wei, G. Sun, X. Wu, Robust $H_\infty$ load frequency control of multi-area power system with time delay: A sliding mode control approach, IEEE/CAA J. Autom. Sinica, 5 (2018), 610–617. https://doi.org/10.1109/JAS.2017.7510649 doi: 10.1109/JAS.2017.7510649
    [7] Y. Sun, N. Li, X. Zhao, Z. Wei, G. Sun, C. Huang, Robust $H_\infty$ load frequency control of delayed multi-area power system with stochastic disturbances, Neurocomputing, 193 (2016), 58–67. https://doi.org/10.1016/j.neucom.2016.01.066 doi: 10.1016/j.neucom.2016.01.066
    [8] J. Li, Z. Chen, D. Cai, W. Zhen, Q. Huang, Delay-dependent stability control for power system with multiple time-delays, IEEE Trans. Power Syst., 31 (2016), 2316–2326. https://doi.org/10.1109/TPWRS.2015.2456037 doi: 10.1109/TPWRS.2015.2456037
    [9] D. Ding, Z. Wang, B. Bo, H. Shu, ${H}_{\infty }$ state estimation for discrete-time complex networks with randomly occurring sensor saturations and randomly varying sensor delays, IEEE T. Neur. Net. Lear., 23 (2012), 725–736. https://doi.org/10.1109/TNNLS.2012.2187926 doi: 10.1109/TNNLS.2012.2187926
    [10] R. Zhang, D. Zeng, S. Zhong, Y. Yu, J. Cheng, Sampled-data synchronisation for memristive neural networks with multiple time-varying delays via extended convex combination method, IET Control Theory Appl., 12 (2018), 922–932. https://doi.org/10.1049/iet-cta.2017.1172 doi: 10.1049/iet-cta.2017.1172
    [11] Z. Wang, Y. Wang, Y. Liu, Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays, IEEE T. Neural Networ., 21 (2010), 11–25. https://doi.org/10.1109/TNN.2009.2033599 doi: 10.1109/TNN.2009.2033599
    [12] Y. Dong, J. Xian, D. Han, New conditions for synchronization in complex networks with multiple time-varying delays, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2581–2588. https://doi.org/10.1016/j.cnsns.2013.01.006 doi: 10.1016/j.cnsns.2013.01.006
    [13] Y. Wang, J. Cao, H. Wang, State estimation for markovian coupled neural networks with multiple time delays via event-triggered mechanism, Neural Process. Lett., 53 (2021), 893–906. https://doi.org/10.1007/s11063-020-10396-4 doi: 10.1007/s11063-020-10396-4
    [14] F. Zheng, Q. Wang, T. Lee, Adaptive robust control of uncertain time delay systems, Automatica, 41 (2005), 1375–1383. https://doi.org/10.1016/j.automatica.2005.03.014 doi: 10.1016/j.automatica.2005.03.014
    [15] C. Hua, G. Feng, X. Guang, Robust controller design of a class of nonlinear time delay systems via backstepping method, Automatica, 44 (2008), 567–573. https://doi.org/10.1016/j.automatica.2007.06.008 doi: 10.1016/j.automatica.2007.06.008
    [16] R. Dong, Y. Chen, W. Qian, An improved approach to robust ${H}_{\infty }$ filtering for uncertain discrete-time systems with multiple delays, Circuits Syst. Signal Process., 39 (2020), 65–82. https://doi.org/10.1007/s00034-019-01162-6 doi: 10.1007/s00034-019-01162-6
    [17] F. Treviso, R. Trinchero, F. G. Canavero, Multiple delay identification in long interconnects via LS-SVM regressio, IEEE Access, 9 (2021), 39028–39042. https://doi.org/10.1109/ACCESS.2021.3063713 doi: 10.1109/ACCESS.2021.3063713
    [18] Y. Li, Y. Lu, Y. Wu, S. He, Robust cooperative control for micro/nano scale systems subject to time-varying delay and structured uncertainties, Int. J. Adv. Manuf. Technol., 105 (2019), 4863–4873. https://doi.org/10.1007/s00170-019-03832-w doi: 10.1007/s00170-019-03832-w
    [19] Y. Yan, J. Huang, Cooperative robust output regulation problem for discrete-time linear time-delay multi-agent systems via the distributed internal model, 2017 IEEE 56th Annual Conference on Decision and Control (CDC), 2017, 4680–4685. https://doi.org/10.1109/CDC.2017.8264350 doi: 10.1109/CDC.2017.8264350
    [20] Z. Zhao, W. Qian, X. Xu, Stability analysis for delayed neural networks based on a generalized free-weighting matrix integral inequality, Syst. Sci. Control Eng., 9 (2021), 6–13. https://doi.org/10.1080/21642583.2020.1858363 doi: 10.1080/21642583.2020.1858363
    [21] L. Zou, Z. Wang, H. Gao, X. Liu, State estimation for discrete-time dynamical networks with time-varying delays and stochastic disturbances under the Round-Robin protocol, IEEE T. Neur. Net. Lear., 28 (2017), 1139–1151. https://doi.org/10.1109/TNNLS.2016.2524621 doi: 10.1109/TNNLS.2016.2524621
    [22] J. Hu, H. Zhang, H. Liu, X. Yu, A survey on sliding mode control for networked control systems, Int. J. Syst. Sci., 52 (2021), 1129–1147. https://doi.org/10.1080/00207721.2021.1885082 doi: 10.1080/00207721.2021.1885082
    [23] L. Zou, Z. Wang, J. Hu, Y. Liu, X. Liu, Communication-protocol-based analysis and synthesis of networked systems: Progress, prospects and challenges, Int. J. Syst. Sci., 52 (2021), 3013–3034. https://doi.org/10.1080/00207721.2021.1917721 doi: 10.1080/00207721.2021.1917721
    [24] H. Liu, W. Qian, W. Xing, Z. Zhao, Further results on delay-dependent robust $H_{\infty}$ control for uncertain systems with interval time-varying delays, Syst. Sci. Control Eng., 9 (2021), 30–40. https://doi.org/10.1080/21642583.2020.1833785 doi: 10.1080/21642583.2020.1833785
    [25] Y. Chen, K. Ma, R. Dong, Dynamic anti-windup design for linear systems with time-varying state delay and input saturations, Int. J. Syst. Sci., 53 (2022), 2165–2179. https://doi.org/10.1080/00207721.2022.2043483 doi: 10.1080/00207721.2022.2043483
    [26] L. Ma, Z. Wang, Y. Liu, F. E. Alsaadi, Distributed filtering for nonlinear time-delay systems over sensor networks subject to multiplicative link noises and switching topology, Int. J. Robust Nonlinear Control, 29 (2019), 2941–2959. https://doi.org/10.1002/rnc.4535 doi: 10.1002/rnc.4535
    [27] E. Xu, K. Ma, Y. Chen, $H_{\infty}$ control for a hyperchaotic finance system with external disturbance based on the quadratic system theory, Syst. Sci. Control Eng., 9 (2021), 41–49. https://doi.org/10.1080/21642583.2020.1848658 doi: 10.1080/21642583.2020.1848658
    [28] H. Geng, H. Liu, L. Ma, X. Yi, Multi-sensor filtering fusion meets censored measurements under a constrained network environment: Advances challenges and prospects, Int. J. Syst. Sci., 52 (2021), 3410–3436. https://doi.org/10.1080/00207721.2021.2005178 doi: 10.1080/00207721.2021.2005178
    [29] W. Qian, W. Xing, S. Fei, $H_\infty$ state estimation for neural networks with general activation function and mixed time-varying delays, IEEE T. Neur. Net. Lear., 32 (2021), 3909–3918. https://doi.org/10.1109/TNNLS.2020.3016120 doi: 10.1109/TNNLS.2020.3016120
    [30] E. Fridman, U. Shaked, Delay-dependent stability and ${H}_{\infty }$ control: constant and time-varying delays, Int. J. Control, 76 (2003), 48–60. https://doi.org/10.1080/0020717021000049151 doi: 10.1080/0020717021000049151
    [31] Y. He, M. Wu, J. H. She, Delay-dependent stability criteria for linear systems with multiple time delays, IEE Proc., Control Theory Appl., 153 (2006), 447–452. http://dx.doi.org/10.1049/ip-cta:20045279 doi: 10.1049/ip-cta:20045279
    [32] J. Wang, L. Kong, Y. Chen, Further results on robust stability of uncertain linear systems with multiple time-varying delays, ICIC Express Lett., 9 (2015), 2879–2885.
    [33] T. Hu, Z. Lin, Control systems with actuator saturation: Analysis and design, Springer Science & Business Media, 2001. https://doi.org/10.1007/978-1-4612-0205-9
    [34] S. Tarbouriech, G. Garcia, J. M. G. da Silva Jr, I. Queinnec, Stability and stabilization of linear systems with saturating actuators, Springer London, 2011. https://doi.org/10.1007/978-0-85729-941-3
    [35] A. T. Fuller, In-the-large stability of relay and saturating control systems with linear controllers, Int. J. Control, 10 (1969), 457–480. https://doi.org/10.1080/00207176908905846 doi: 10.1080/00207176908905846
    [36] B. Zhou, Z. Lin, G. Duan, Robust global stabilization of linear systems with input saturation via gain scheduling, Int. J. Robust Nonlinear Control, 20 (2010), 424–447. https://doi.org/10.1002/rnc.1436 doi: 10.1002/rnc.1436
    [37] B. Zhou, G. Duan, Z. Lin, A parametric lyapunov equation approach to the design of low gain feedback, IEEE T. Automat Contr., 53 (2008), 1548–1554. https://doi.org/10.1109/TAC.2008.921036 doi: 10.1109/TAC.2008.921036
    [38] B. Zhou, Analysis and design of discrete-time linear systems with nested actuator saturations, Syst. Control Lett., 62 (2013), 871–879. https://doi.org/10.1016/j.sysconle.2013.06.012 doi: 10.1016/j.sysconle.2013.06.012
    [39] E. Fridman, A. Pila, U. Shaked, Regional stabilization and $H_\infty$ control of time-delay systems with saturating actuators, Int. J. Robust Nonlinear Control, 13 (2003), 885–907. https://doi.org/10.1002/rnc.852 doi: 10.1002/rnc.852
    [40] L. Zhang, E. K. Boukas, A. Haidar, Delay-range-dependent control synthesis for time-delay systems with actuator saturation, Automatica, 44 (2008), 2691–2695. https://doi.org/10.1016/j.automatica.2008.03.009 doi: 10.1016/j.automatica.2008.03.009
    [41] H. He, X. Gao, W. Qi, Asynchronous $H_\infty$ control of time-delayed switched systems with actuator saturation via anti-windup design, Optim. Control. Appl. Methods, 39 (2018), 1–18. https://doi.org/10.1002/oca.2330 doi: 10.1002/oca.2330
    [42] Y. Chen, S. Fei, Y. Li, Robust stabilization for uncertain saturated time-delay systems: A distributed-delay-dependent polytopic approach, IEEE T. Automat. Contr., 62 (2017), 3455–3460. https://doi.org/10.1109/TAC.2016.2611559 doi: 10.1109/TAC.2016.2611559
    [43] Y. Chen, Z. Wang, S. Fei, Q. L. Han, Regional stabilization for discrete time-delay systems with actuator saturations via a delay-dependent polytopic approach, IEEE T. Automat. Contr., 64 (2019), 1257–1264. https://doi.org/10.1109/TAC.2018.2847903 doi: 10.1109/TAC.2018.2847903
    [44] Y. Chen, Z. Wang, B. Shen, H. Dong, Exponential synchronization for delayed dynamical networks via intermittent control: Dealing with actuator saturations, IEEE T. Neur. Net. Lear., 30 (2019), 1000–1012. https://doi.org/10.1109/tnnls.2018.2854841 doi: 10.1109/tnnls.2018.2854841
    [45] Y. Chen, S. Fei, K. Zhang, Stabilization of impulsive switched linear systems with saturated control input, Nonlinear Dyn., 69 (2012), 793–804. https://doi.org/10.1007/s11071-011-0305-y doi: 10.1007/s11071-011-0305-y
    [46] L. Ma, Z. Wang, Y. Chen, X. Yi, Probability-guaranteed distributed filtering for nonlinear systems with innovation constraints over sensor networks, IEEE T. Control. Netw., 8 (2021), 951–963. https://doi.org/10.1109/TCNS.2021.3049361 doi: 10.1109/TCNS.2021.3049361
    [47] Y. Chen, S. Fei, Y. Li, Stabilization of neutral time-delay systems with actuator saturation via auxiliary time-delay feedback, Automatica, 52 (2015), 242–247. https://doi.org/10.1016/j.automatica.2014.11.015 doi: 10.1016/j.automatica.2014.11.015
    [48] M. Basin, J. Rodriguez-Gonzalez, L. Fridman, Optimal and robust control for linear state-delay systems, J. Franklin Inst., 344 (2007), 830–845. https://doi.org/10.1016/j.jfranklin.2006.10.002 doi: 10.1016/j.jfranklin.2006.10.002
    [49] N. M. Dmitruk, Optimal robust control of constrained linear time-delay systems, IFAC Proc. Vol., 40 (2007), 168–173. https://doi.org/10.1016/S1474-6670(17)69282-6 doi: 10.1016/S1474-6670(17)69282-6
    [50] A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: Application to time-delay systems, Automatica, 49 (2013), 2860–2866. https://doi.org/10.1016/j.automatica.2013.05.030 doi: 10.1016/j.automatica.2013.05.030
    [51] A. Seuret, F. Gouaisbaut, Hierarchy of LMI conditions for the stability analysis of time-delay systems, Syst. Control Lett., 81 (2015), 1–7. https://doi.org/10.1016/j.sysconle.2015.03.007 doi: 10.1016/j.sysconle.2015.03.007
    [52] M. Wu, Y. He, J. H. She, Delay-dependent stabilization for systems with multiple unknown time-varying delays, Int. J. Control Autom. Syst., 4 (2006), 682–688.
    [53] L. Xie, E. Fridman, U. Shaked, Robust $H_\infty$ control of distributed delay systems with application to combustion control, IEEE T. Automat Contr., 46 (2001), 1930–1935. https://doi.org/10.1109/9.975483 doi: 10.1109/9.975483
    [54] Z. Gu, P. Shi, D. Yue, Z. Ding, Decentralized adaptive event-triggered $H_\infty$ filtering for a class of networked nonlinear interconnected systems, IEEE T. Cybernetics, 49 (2019), 1570–1579. https://doi.org/10.1109/TCYB.2018.2802044 doi: 10.1109/TCYB.2018.2802044
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1461) PDF downloads(58) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog