Research article Special Issues

On boundedness of fractional integral operators via several kinds of convex functions

  • Received: 26 June 2022 Revised: 17 August 2022 Accepted: 23 August 2022 Published: 30 August 2022
  • MSC : 26A33, 26D10, 31A10

  • For generalizations of concepts of different fields fractional derivative operators as well as fractional integral operators are useful notions. Our aim in this paper is to discuss boundedness of the integral operators which contain Mittag-Leffler function in their kernels. The results are obtained for strongly $ (\alpha, h-m) $-convex functions which hold for different kinds of convex functions at the same time. They also give improvements/refinements of many already published results.

    Citation: Yonghong Liu, Ghulam Farid, Dina Abuzaid, Hafsa Yasmeen. On boundedness of fractional integral operators via several kinds of convex functions[J]. AIMS Mathematics, 2022, 7(10): 19167-19179. doi: 10.3934/math.20221052

    Related Papers:

  • For generalizations of concepts of different fields fractional derivative operators as well as fractional integral operators are useful notions. Our aim in this paper is to discuss boundedness of the integral operators which contain Mittag-Leffler function in their kernels. The results are obtained for strongly $ (\alpha, h-m) $-convex functions which hold for different kinds of convex functions at the same time. They also give improvements/refinements of many already published results.



    加载中


    [1] A. Fernandez, P. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag‐Leffler kernels, Math. Method. Appl. Sci., 44 (2021), 8414–8431. http://dx.doi.org/10.1002/mma.6188 doi: 10.1002/mma.6188
    [2] M. Khan, Y. Chu, A. Kashuri, R. Liko, G. Ali, Conformable fractional integrals versions of Hermite-Hadamard inequalities and their generalizations, J. Funct. Space., 2018 (2018), 6928130. http://dx.doi.org/10.1155/2018/6928130 doi: 10.1155/2018/6928130
    [3] P. Mohammed, T. Abdeljawad, A. Kashuri, Fractional Hermite-Hadamard-Fejér inequalities for a convex function with respect to an increasing function involving a positive weighted symmetric function, Symmetry, 12 (2020), 1503. http://dx.doi.org/10.3390/sym12091503 doi: 10.3390/sym12091503
    [4] K. Nonlaopon, G. Farid, H. Yasmeen, F. Shah, C. Jung, Generalization of some fractional integral operator inequalities for convex functions via unified Mittag-Leffler function, Symmetry, 14 (2022), 922. http://dx.doi.org/10.3390/sym14050922 doi: 10.3390/sym14050922
    [5] E. Set, A. Akdemir, B. Çelik, On generalization of Fejér type inequalities via fractional integral operators, Filomat, 32 (2018), 5537–5547. http://dx.doi.org/10.2298/FIL1816537S doi: 10.2298/FIL1816537S
    [6] H. Ahmad, M. Tariq, S. Sahoo, S. Askar, A. Abouelregal, K. Khedher, Refinements of Ostrowski type integral inequalities involving Atangana-Baleanu fractional integral operator, Symmetry, 13 (2021), 2059. http://dx.doi.org/10.3390/sym13112059 doi: 10.3390/sym13112059
    [7] M. Gurbuz, Y. Tasdan, E. Set, Ostrowski type inequalities via the Katugampola fractional integrals, AIMS Mathematics, 5 (2020), 42–53. http://dx.doi.org/10.3934/math.2020004 doi: 10.3934/math.2020004
    [8] S. Sahoo, M. Tariq, H. Ahmad, J. Nasir, H. Aydi, A. Mukheimer, New Ostrowski-type fractional integral inequalities via generalized exponential-type convex functions and applications, Symmetry, 13 (2021), 1429. http://dx.doi.org/10.3390/sym13081429 doi: 10.3390/sym13081429
    [9] H. Budak, F. Hezenci, H. Kara, On generalized Ostrowski, Simpson and Trapezoidal type inequalities for co-ordinated convex functions via generalized fractional integrals, Adv. Differ. Equ., 2021 (2021), 312. http://dx.doi.org/10.1186/s13662-021-03463-0 doi: 10.1186/s13662-021-03463-0
    [10] K. Jangid, S. Purohit, R. Agarwal, On Grüss type inequality involving a fractional integral operator with a multi-index Mittag-Leffler function as a kernel, Appl. Math. Inf. Sci., 16 (2022), 269–276. http://dx.doi.org/10.18576/amis/160214 doi: 10.18576/amis/160214
    [11] E. Set, A. Akdemir, F. Demirci, Grüss type inequalities for fractional integral operator involving the extended generalized Mittag-Leffler function, Appl. Comput. Math., 19 (2020), 402–414.
    [12] M. Samraiz, M. Afzal, S. Iqbal, A. Kashuri, Opial-type inequalities for generalized integral operators with special kernels in fractional calculus, Commun. Math. Appl., 9 (2018), 421–431.
    [13] A. Akdemir, S. Butt, M. Nadeem, M. Ragusa, New general variants of Chebyshev type inequalities via generalized fractional integral operators, Mathematics, 9 (2021), 122. http://dx.doi.org/10.3390/math9020122 doi: 10.3390/math9020122
    [14] H. Srivastava, A. Kashuri, P. Mohammed, A. Alsharif, J. Guirao, New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel, AIMS Mathematics, 6 (2021), 11167–11186. http://dx.doi.org/10.3934/math.2021648 doi: 10.3934/math.2021648
    [15] J. Delgado, J. Valdes, E. Reyes, M. Vivas-Cortez, The Minkowski inequality for generalized fractional integrals, Appl. Math. Inf. Sci., 15 (2021), 1–7. http://dx.doi.org/10.18576/amis/150101 doi: 10.18576/amis/150101
    [16] R. Liko, P. Mohammed, A. Kashuri, Y. Hamed, Reverse Minkowski inequalities pertaining to new weighted generalized fractional integral operators, Fractal Fract., 6 (2022), 131. http://dx.doi.org/10.3390/fractalfract6030131 doi: 10.3390/fractalfract6030131
    [17] Y. Zhang, G. Farid, Z. Salleh, A. Ahmad, On a unified Mittag-Leffler function and associated fractional integral operator, Math. Probl. Eng., 2021 (2021), 6043769. http://dx.doi.org/10.1155/2021/6043769 doi: 10.1155/2021/6043769
    [18] S. Zhou, G. Farid, A. Ahmad, Fractional versions of Minkowski-type integral inequalities via unified Mittag-Leffler function, Adv. Cont. Discr. Mod., 2022 (2022), 9. http://dx.doi.org/10.1186/s13662-022-03681-0 doi: 10.1186/s13662-022-03681-0
    [19] D. Bhatnagar, R. Pandey, A study of some integral transforms on Q function, South East Asian Journal of Mathematics and Mathematical Sciences, 16 (2020), 99–110.
    [20] T. Gao, G. Farid, A. Ahmad, W. Luangboon, K. Nonlaopon, Fractional Minkowski-type integral inequalities via the unified generalized fractional integral operator, J. Funct. Space., 2022 (2022), 2890981. http://dx.doi.org/10.1155/2022/2890981 doi: 10.1155/2022/2890981
    [21] Z. He, X. Ma, G. Farid, A. Haq, K. Mahreen, Bounds of a unified integral operator for $(s, m)$-convex functions and their consequences, AIMS Mathematics, 5 (2020), 5510–5520. http://dx.doi.org/10.3934/math.2020353 doi: 10.3934/math.2020353
    [22] Z. Zhang, G. Farid, K. Mahreen, Inequalities for unified integral operators via strongly $(\alpha, h‐m)$-convexity, J. Funct. Space., 2021 (2021), 6675826. http://dx.doi.org/10.1155/2021/6675826 doi: 10.1155/2021/6675826
    [23] C. Jung, G. Farid, K. Mahreen, S. Shim, Inequalities for a unified integral operator for strongly $(\alpha, m)$-convex function and related results in fractional calculus, J. Funct. Space., 2021 (2021), 6610836. http://dx.doi.org/10.1155/2021/6610836 doi: 10.1155/2021/6610836
    [24] L. Chen, G. Farid, S. Butt, S. Akbar, Boundedness of fractional integral operators containing Mittag-Leffler functions, Turkish J. Ineq, 4 (2020), 14–24.
    [25] Y. Dong, M. Saddiqa, S. Ullah, G. Farid, Study of fractional integral operators containing Mittag-Leffler functions via strongly $(\alpha, m)$-convex functions, Math. Probl. Eng., 2021 (2021), 6693914. http://dx.doi.org/10.1155/2021/6693914 doi: 10.1155/2021/6693914
    [26] Z. Chen, G. Farid, M. Saddiqa, S. Ullah, N. Latif, Study of fractional integral inequalities involving Mittag-Leffler functions via convexity, J. Inequal. Appl., 2020 (2020), 206. http://dx.doi.org/10.1186/s13660-020-02465-y doi: 10.1186/s13660-020-02465-y
    [27] G. Farid, K. Mahreen, Y. Chu, Study of inequalities for unified integral operators of generalized convex functions, Open Journal of Mathematical Sciences, 5 (2021), 80–93. http://dx.doi.org/10.30538/oms2021.0147 doi: 10.30538/oms2021.0147
    [28] G. Farid, Some Riemann-Liouville fractional integral for inequalities for convex functions, J. Anal., 27 (2019), 1095–1102. http://dx.doi.org/10.1007/s41478-0079-4 doi: 10.1007/s41478-0079-4
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1470) PDF downloads(59) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog