Research article Special Issues

Evaluation of time-fractional Fisher's equations with the help of analytical methods

  • Received: 23 May 2022 Revised: 04 August 2022 Accepted: 09 August 2022 Published: 23 August 2022
  • MSC : 34A34, 35A20, 35A22, 44A10, 33B15

  • This article shows how to solve the time-fractional Fisher's equation through the use of two well-known analytical methods. The techniques we propose are a modified form of the Adomian decomposition method and homotopy perturbation method with a Yang transform. To show the accuracy of the suggested techniques, illustrative examples are considered. It is confirmed that the solution we get by implementing the suggested techniques has the desired rate of convergence towards the accurate solution. The main benefit of the proposed techniques is the small number of calculations. To show the reliability of the suggested techniques, we present some graphical behaviors of the accurate and analytical results, absolute error graphs and tables that strongly agree with each other. Furthermore, it can be used for solving fractional-order physical problems in various fields of applied sciences.

    Citation: Ahmed M. Zidan, Adnan Khan, Rasool Shah, Mohammed Kbiri Alaoui, Wajaree Weera. Evaluation of time-fractional Fisher's equations with the help of analytical methods[J]. AIMS Mathematics, 2022, 7(10): 18746-18766. doi: 10.3934/math.20221031

    Related Papers:

  • This article shows how to solve the time-fractional Fisher's equation through the use of two well-known analytical methods. The techniques we propose are a modified form of the Adomian decomposition method and homotopy perturbation method with a Yang transform. To show the accuracy of the suggested techniques, illustrative examples are considered. It is confirmed that the solution we get by implementing the suggested techniques has the desired rate of convergence towards the accurate solution. The main benefit of the proposed techniques is the small number of calculations. To show the reliability of the suggested techniques, we present some graphical behaviors of the accurate and analytical results, absolute error graphs and tables that strongly agree with each other. Furthermore, it can be used for solving fractional-order physical problems in various fields of applied sciences.



    加载中


    [1] A. Loverro, Fractional calculus: History, definitions and applications for the engineer. Rapport technique, Univeristy of Notre Dame: Department of Aerospace and Mechanical Engineering, 2004, 1–28.
    [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Book review: Theory and Applications of Fractional Differential Equations, 13 (2006), 101–102. https://doi.org/10.1142/s0218348x07003447
    [3] I. Podlubny, Fractional Differential Equations, 198 Academic Press, 1999, San Diego, California, USA.
    [4] M. Inc, The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method, J. Math. Anal. Appl., 345 (2008), 476–484. https://doi.org/10.1016/j.jmaa.2008.04.007 doi: 10.1016/j.jmaa.2008.04.007
    [5] Z. Odibat, Approximations of fractional integrals and Caputo fractional derivatives, Appl. Math. Comput., 178 (2006), 527–533. https://doi.org/10.1016/j.amc.2005.11.072 doi: 10.1016/j.amc.2005.11.072
    [6] S. Murtaza, F. Ali, A. Aamina, N. A. Sheikh, I. Khan, K. S. Nisar, Exact analysis of non-linear fractionalized Jeffrey fluid, a novel approach of Atangana-Baleanu fractional model, Comput. Mater. Con., 65 (2020), 2033–2047. https://doi.org/10.32604/cmc.2020.011817 doi: 10.32604/cmc.2020.011817
    [7] F. Ali, S. Murtaza, N. Sheikh, I. Khan, Heat transfer analysis of generalized Jeffery nanofluid in a rotating frame: Atangana-Balaenu and Caputo-Fabrizio fractional models, Chaos Soliton. Fract., 129 (2019), 1–15. https://doi.org/10.1016/j.chaos.2019.08.013 doi: 10.1016/j.chaos.2019.08.013
    [8] N. Iqbal, T. Botmart, W. Mohammed, A. Ali, Numerical investigation of fractional-order Kersten-Krasil shchik coupled KdV-mKdV system with Atangana-Baleanu derivative, Adv. Contin. Discrete Models, 2022 (2022), 37. https://doi.org/10.1186/s13662-022-03709-5 doi: 10.1186/s13662-022-03709-5
    [9] H. Yasmin, N. Iqbal, A comparative study of the fractional coupled Burgers and Hirota-Satsuma KdV equations via analytical techniques, Symmetry, 14 (2022), 1364. https://doi.org/10.3390/sym14071364 doi: 10.3390/sym14071364
    [10] A. Goswami, J. Singh, D. Kumar, S. Gupta, Sushila, An efficient analytical technique for fractional partial differential equations occurring in ion acoustic waves in plasma, J. Ocean Eng. Sci., 4 (2019), 85–99. https://doi.org/10.1016/j.joes.2019.01.003 doi: 10.1016/j.joes.2019.01.003
    [11] N. Iqbal, A. Albalahi, M. Abdo, W. Mohammed, Analytical analysis of fractional-order Newell-Whitehead-Segel equation: A modified homotopy perturbation transform method, J. Funct. Space., 2022. https://doi.org/10.1155/2022/3298472 doi: 10.1155/2022/3298472
    [12] V. Martynyuk, M. Ortigueira, Fractional model of an electrochemical capacitor, Signal Proc., 107 (2015), 355–360. https://doi.org/10.1016/j.sigpro.2014.02.021 doi: 10.1016/j.sigpro.2014.02.021
    [13] C. Lorenzo, T. Hartley, Initialization, conceptualization, and application in the generalized (fractional) calculus, Crit. Rev. Biomed. Eng., 35 (2007), 447–553. https://doi.org/10.1615/critrevbiomedeng.v35.i6.10 doi: 10.1615/critrevbiomedeng.v35.i6.10
    [14] M. Kbiri Alaoui, K. Nonlaopon, A. Zidan, A. Khan, R. Shah, Analytical investigation of fractional-order Cahn-Hilliard and Gardner equations using two novel techniques, Mathematics, 10 (2022), 1643. https://doi.org/10.3390/math10101643 doi: 10.3390/math10101643
    [15] M. Alshammari, N. Iqbal, D. Ntwiga, A comparative study of fractional-order diffusion model within Atangana-Baleanu-Caputo operator, J. Funct. Space., 2022 (2022), 1–12. https://doi.org/10.1155/2022/9226707 doi: 10.1155/2022/9226707
    [16] Y. Qin, A. Khan, I. Ali, M. Al Qurashi, H. Khan, R. Shah, et al., An efficient analytical approach for the solution of certain fractional-order dynamical systems, Energies, 13 (2020), 2725. https://doi.org/10.3390/en13112725 doi: 10.3390/en13112725
    [17] K. Nonlaopon, A. Alsharif, A. Zidan, A. Khan, Y. Hamed, R. Shah, Numerical investigation of fractional-order Swift-Hohenberg equations via a novel transform, Symmetry, 13 (2021), 1263. https://doi.org/10.3390/sym13071263 doi: 10.3390/sym13071263
    [18] M. Rawashdeh, Approximate solutions for coupled systems of nonlinear PDEs using the reduced differential transform method, Math. Comput. Appl., 19 (2014), 161–171. https://doi.org/10.3390/mca19020161 doi: 10.3390/mca19020161
    [19] S. El-Wakil, A. Elhanbaly, M. Abdou, Adomian decomposition method for solving fractional nonlinear differential equations, Appl. Math. Comput., 182 (2006), 313–324. https://doi.org/10.1016/j.amc.2006.02.055 doi: 10.1016/j.amc.2006.02.055
    [20] H. Khan, A. Khan, M. Al-Qurashi, R. Shah, D. Baleanu, Modified modelling for heat like equations within Caputo operator, Energies, 13 (2020), 2002. https://doi.org/10.3390/en13082002 doi: 10.3390/en13082002
    [21] A. Alderremy, S. Aly, R. Fayyaz, A. Khan, R. Shah, N. Wyal, The analysis of fractional-order nonlinear systems of third order KdV and Burgers equations via a novel transform, Complexity, 2022 (2022), 1–24. https://doi.org/10.1155/2022/4935809 doi: 10.1155/2022/4935809
    [22] G. Adomian, Solution of physical problems by decomposition, Comput. Math. Appl., 27 (1994), 145–154. https://doi.org/10.1016/0898-1221(94)90132-5 doi: 10.1016/0898-1221(94)90132-5
    [23] G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135 (1988), 501–544. https://doi.org/10.1016/0022-247x(88)90170-9 doi: 10.1016/0022-247x(88)90170-9
    [24] J. He, Homotopy perturbation technique, Comput. Meth. Appl. Mech. Eng., 178 (1999), 257–262. https://doi.org/10.1016/s0045-7825(99)00018-3 doi: 10.1016/s0045-7825(99)00018-3
    [25] J. He, A coupling method of a homotopy technique and a perturbation technique for non-linear problems, Int. J. Non-Linear Mech., 35 (2000), 37–43. https://doi.org/10.1016/s0020-7462(98)00085-7 doi: 10.1016/s0020-7462(98)00085-7
    [26] J. H. He, Application of homotopy perturbation method to nonlinear wave equations, Chaos, Soliton. Fract., 26 (2005).
    [27] N. Iqbal, A. Akgul, A. Bariq, M. Mossa Al-Sawalha, A. Ali, On solutions of fractional-order gas dynamics equation by effective techniques, J. Funct. Space., 2022 (2022), 1–14. https://doi.org/10.1155/2022/3341754 doi: 10.1016/j.physleta.2005.10.005
    [28] J. He, Homotopy perturbation method for solving boundary value problems, Phys. Lett. A, 350 (2006), 87–88. https://doi.org/10.1016/j.physleta.2005.10.005 doi: 10.1016/j.physleta.2005.10.005
    [29] W. He, N. Chen, I. Dassios, N. Shah, J. Chung, Fractional system of Korteweg-De Vries equations via Elzaki transform, Mathematics, 9 (2021), 673. https://doi.org/10.3390/math9060673 doi: 10.3390/math9060673
    [30] N. Shah, P. Agarwal, J. Chung, E. El-Zahar, Y. Hamed, Analysis of optical solitons for nonlinear Schrodinger Equation with detuning term by iterative transform method, Symmetry, 12 (2020), 1850. https://doi.org/10.3390/sym12111850 doi: 10.3390/sym12111850
    [31] A. N. Kolmogorov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. Moskow, Ser. Internat., Sec. A, 1 (1937), 1–25. https://doi.org/10.1007/bf01190613 doi: 10.1007/bf01190613
    [32] A. Mironer, D. Dosanjh, Coupled diffusion of heat and vorticity in a gaseous vortex, Int. J. Heat Mass Tran., 12 (1969), 1231–1248. https://doi.org/10.1016/0017-9310(69)90168-9 doi: 10.1016/0017-9310(69)90168-9
    [33] A. Ammerman, L. Cavalli-Sforza, Measuring the rate of spread of early farming in europe, Man, 6 (1971), 674. https://doi.org/10.2307/2799190 doi: 10.2307/2799190
    [34] M. Bramson, Maximal displacement of branching brownian motion, Commun. Pure Appl. Math., 31 (1978), 531–581. https://doi.org/10.1002/cpa.3160310502 doi: 10.1002/cpa.3160310502
    [35] J. Canosa, Diffusion in nonlinear multiplicative media, J. Math. Phys., 10 (1969), 1862–1868. https://doi.org/10.1063/1.1664771 doi: 10.1063/1.1664771
    [36] X. Y. Wang, Exact and explicit solitary wave solutions for the generalised Fisher equation, Phys. Lett. A, 131 (1988), 277–279.
    [37] J. R. Branco, J. A. Ferreira, P. De Oliveira, Numerical methods for the generalized Fisher-Kolmogorov-Petrovskii-Piskunov equation, Appl. Numer. Math., 57 (2007), 89–102.
    [38] J. E. Macías-Díaz, I. E. Medina-Ramírez, A. Puri, Numerical treatment of the spherically symmetric solutions of a generalized Fisher-Kolmogorov-Petrovsky-Piscounov equation, J. Comput. Appl. Math., 231 (2009), 851–868.
    [39] X. Y. Wang, Exact and explicit solitary wave solutions for the generalised Fisher equation, Phys. Lett. A, 131 (1988), 277–279.
    [40] A. M. Wazwaz, A. Gorguis, An analytic study of Fisher's equation by using Adomian decomposition method, Appl. Math. Comput., 154 (2004), 609–620.
    [41] M. Rostamian, A. Shahrezaee, A meshless method to the numerical solution of an inverse reaction-diffusion-convection problem, Int. J. Comput. Math., 94 (2016), 597–619. https://doi.org/10.1080/00207160.2015.1119816 doi: 10.1080/00207160.2015.1119816
    [42] H. Gu, B.Lou, M. Zhou, Long time behavior of solutions of Fisher-KPP equation with advection and free boundaries, J. Funct. Anal., 269 (2015), 1714–1768. https://doi.org/10.1016/j.jfa.2015.07.002 doi: 10.1016/j.jfa.2015.07.002
    [43] P. Sunthrayuth, R. Ullah, A. Khan, R. Shah, J. Kafle, I. Mahariq, et al., Numerical analysis of the fractional-order nonlinear system of Volterra integro-differential equations, J. Funct. Space., 2021 (2021), 1–10. https://doi.org/10.1155/2021/1537958 doi: 10.1155/2021/1537958
    [44] M. Areshi, A. Khan, R. Shah, K. Nonlaopon, Analytical investigation of fractional-order Newell-Whitehead-Segel equations via a novel transform, AIMS Math., 7 (2022), 6936–6958. https://doi.org/10.3934/math.2022385 doi: 10.3934/math.2022385
    [45] Y. Zhao, D. Baleanu, M. Baleanu, D. Cheng, X. Yang, Mappings for special functions on Cantor sets and special integral transforms via local fractional operators, Abstr. Appl. Anal., 2013 (2013), 1–6. https://doi.org/10.1155/2013/316978 doi: 10.1155/2013/316978
    [46] P. Sunthrayuth, H. Alyousef, S. El-Tantawy, A. Khan, N. Wyal, Solving fractional-order diffusion equations in a plasma and fluids via a novel transform, J. Funct. Space., 2022 (2022), 1–19. https://doi.org/10.1155/2022/1899130 doi: 10.1155/2022/1899130
    [47] M. Alaoui, R. Fayyaz, A. Khan, M. Abdo, Analytical investigation of Noyes-Field model for time-fractional Belousov-Zhabotinsky reaction, Complexity, 2021 (2021), 1–21. https://doi.org/10.1155/2021/3248376 doi: 10.1155/2021/3248376
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1424) PDF downloads(101) Cited by(46)

Article outline

Figures and Tables

Figures(4)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog