Research article

Transitivity and sensitivity for the $ p $-periodic discrete system via Furstenberg families

  • Received: 25 August 2021 Accepted: 13 October 2021 Published: 22 October 2021
  • MSC : 37B45, 37B55, 54H20

  • The consistency and implication relation of chaotic properties of $ p $-periodic discrete system and its induced autonomous discrete system are obtained. The chaotic properties discussed involve several types of transitivity and some stronger forms of sensitivity in the sense of Furstenberg families.

    Citation: Xiaofang Yang, Tianxiu Lu, Waseem Anwar. Transitivity and sensitivity for the $ p $-periodic discrete system via Furstenberg families[J]. AIMS Mathematics, 2022, 7(1): 1321-1332. doi: 10.3934/math.2022078

    Related Papers:

  • The consistency and implication relation of chaotic properties of $ p $-periodic discrete system and its induced autonomous discrete system are obtained. The chaotic properties discussed involve several types of transitivity and some stronger forms of sensitivity in the sense of Furstenberg families.



    加载中


    [1] S. Kolyada, L. Snoha, Topological entropy of nonautonomous dynamical systems, Random Comput. Dyn., 4 (1996), 205–233.
    [2] W. Qian, F. Meng, Periodic solutions of a class of nonautonomous discrete time semi-ratio-dependent predator-prey systems, Discrete Cont. Dyn. Syst., 4 (2004), 563–574. doi: 10.3934/dcdsb.2004.4.563. doi: 10.3934/dcdsb.2004.4.563
    [3] C. Guo, Y. Chen, J. Shu, Dynamical behaviors of non-autonomous fractional FitzHugh-Nagumo system driven by additive noise in unbounded domains, Front. Math. China, 16 (2021), 59–93. doi: 10.1007/s11464-021-0896-7. doi: 10.1007/s11464-021-0896-7
    [4] Z. Wang, J. Zhang, M. Chen, A unified approach to periodic solutions for a class of non-autonomous second order Hamiltonian systems, Nonlinear Anal-Real., 58 (2021), 103218. doi: 10.1016/j.nonrwa.2020.103218. doi: 10.1016/j.nonrwa.2020.103218
    [5] J. M. Cushing, S. M. Henson, The effcct of periodic habit fluctuations on a nonlincar insect population model, J. Math. Biol., 36 (1997), 201–226. doi: 10.1007/s002850050098. doi: 10.1007/s002850050098
    [6] I. Sanchez, M. Sanchi, H. Villanueva, Chaos in hyperspaces of nonautonomous discrete systems, Chaos Soliton. Fract., 94 (2017), 68–74. doi: 10.1016/j.chaos.2016.11.009. doi: 10.1016/j.chaos.2016.11.009
    [7] R. M. Abu-Saris, On nonautonomous discrete dynamical systems driven by means, Adv. Differ. Equ-Ny., 13 (2006), 1–7. doi: 10.1155/ADE/2006/43470. doi: 10.1155/ADE/2006/43470
    [8] Y. Lan, A. Peris, Weak stability of non-autonomous discrete dynamical systems, Topol. Appl., 250 (2018), 53–60. doi: 10.1016/j.topol.2018.10.006. doi: 10.1016/j.topol.2018.10.006
    [9] J. S. Canovas, Recent results on non-autonomous discrete systems, SeMA J., 51 (2010), 33–40. doi: 10.1007/BF03322551. doi: 10.1007/BF03322551
    [10] Y. Shi, Chaos in nonautonomous discrete dynamical systems approached by their induced systems, Int. J. Bifurcat. Chaos, 22 (2012), 1250284. doi: 10.1142/S0218127412502847. doi: 10.1142/S0218127412502847
    [11] Y. Lan, Chaos in nonautonomous discrete fuzzy dynamical systems, J. Nonlinear Sci. Appl., 9 (2016), 404–412. doi: 10.22436/jnsa.009.02.06. doi: 10.22436/jnsa.009.02.06
    [12] R. Vasisht, R. Das, Specification and shadowing properties for non-autonomous systems, J. Dyn. Control Syst., 2021 (2021), 1–12. doi: 10.1007/s10883-021-09535-4. doi: 10.1007/s10883-021-09535-4
    [13] M. Salman, X. Wu, R. Das, Sensitivity of nonautonomous dynamical systems on uniform spaces, Int. J. Bifurcat. Chaos, 31 (2021), 2150017. doi: 10.1142/S0218127421500176. doi: 10.1142/S0218127421500176
    [14] R. Devaney, L. Robert, An introduction to chaotic dynamical systems, Acta Appl. Math., 19 (1990), 204–205.
    [15] D. Ruelle, F. Takens, On the nature of turbulence, Commun. Math. Phys., 20 (1971), 178–188. doi: 10.1007/BF01646553. doi: 10.1007/BF01646553
    [16] H. Liu, L. Liao, L. Wang, Thickly syndetical sensitivity of topological dynamical system, Discrete Dyn. Nat. Soc., 2014 (2014), 583431. doi: 10.1155/2014/583431. doi: 10.1155/2014/583431
    [17] R. Li, The large deviations theorem and ergodic sensitivity, Commun. Nonlinear Sci., 18 (2013), 819–825. doi: 10.1016/j.cnsns.2012.09.008. doi: 10.1016/j.cnsns.2012.09.008
    [18] T. Moothathu, Stronger forms of sensitivity for dynamical systems, Nonlinearity, 20 (2007), 2115–2126. doi: 10.1088/0951-7715/20/9/006. doi: 10.1088/0951-7715/20/9/006
    [19] R. Li, T. Lu, G. Chen, X. Yang, Further discussion on Kato's chaos in set-valued discrete systems, J. Appl. Anal. Comput., 10 (2020), 2491–2505. doi: 10.11948/20190388. doi: 10.11948/20190388
    [20] H. Wang, J. Xiong, F. Tan, Furstenberg families and sensitivity, Discrete Dyn. Nature Soc., 12 (2010), 649348. doi: 10.1155/2010/649348. doi: 10.1155/2010/649348
    [21] R. Li, T. Lu, G. Chen, G. Liu, Some stronger forms of topological transitivity and sensitivity for a sequence of uniformly convergent continuous maps, J. Math. Anal. Appl., 494 (2020), 124443. doi: 10.1016/j.jmaa.2020.124443. doi: 10.1016/j.jmaa.2020.124443
    [22] L. Alseda, M. A. D. Rio, J. A. Rodriguez, A note on the totally transitive graph maps stability of pwl cellular, Int. J. Bifurcat. Chaos, 11 (2001), 841–843. doi: 10.1142/S0218127401002365. doi: 10.1142/S0218127401002365
    [23] M. Murillo-Arcila, A. Peris, Mixing properties for nonautonomous linear dynamics and invariant sets, Appl. Math. Lett., 26 (2013), 215–218. doi: 10.1016/j.aml.2012.08.014. doi: 10.1016/j.aml.2012.08.014
    [24] L. Wang, J. Liang, Z. Chu, Weakly mixing property and chaos, Arch. Math., 109 (2017), 83–89. doi: 10.1007/s00013-017-1044-1. doi: 10.1007/s00013-017-1044-1
    [25] Q. Huang, Chaos theory and application of discrete dynamic system, Diss, Shandong Univ., 2012 (In Chinese).
    [26] R. Li, Z. Yu, H. Wang, Stronger forms of transitivity and sensitivity for nonautonomous discrete dynamical systems and furstenberg families, J. Dyn. Control Syst., 26 (2020), 109–126. doi: 10.1007/s10883-019-09437-6. doi: 10.1007/s10883-019-09437-6
    [27] X. Yang, X. Tang, T. Lu, The collectively sensitivity and accessible in non-autonomous composite systems, Acta Math. Sci., (In Chinese, in press).
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1980) PDF downloads(76) Cited by(2)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog