Research article

Nonparametric estimation of the measure of functional dependence

  • Received: 13 May 2021 Accepted: 15 September 2021 Published: 18 September 2021
  • MSC : 62G05, 62G07

  • In this paper, we propose a beta kernel estimator to measure functional dependence (MFD). The MFD not only can measure the strength of linear or monotonic relationships, but it is also suitable for more complicated functional dependence. We derive the asymptotic distribution of the proposed estimator and then use several simulated examples to compare our estimator with the traditional measures. Our simulation results demonstrate that beta kernel provides high accuracy in estimation. A real data example is also given to illustrate one possible application of the new estimator.

    Citation: Qingsong Shan, Qianning Liu. Nonparametric estimation of the measure of functional dependence[J]. AIMS Mathematics, 2021, 6(12): 13488-13502. doi: 10.3934/math.2021782

    Related Papers:

  • In this paper, we propose a beta kernel estimator to measure functional dependence (MFD). The MFD not only can measure the strength of linear or monotonic relationships, but it is also suitable for more complicated functional dependence. We derive the asymptotic distribution of the proposed estimator and then use several simulated examples to compare our estimator with the traditional measures. Our simulation results demonstrate that beta kernel provides high accuracy in estimation. A real data example is also given to illustrate one possible application of the new estimator.



    加载中


    [1] H. O. Lancaster, Dependence, measures and indices of, In: Encyclopedia of statistical sciences, 1982.
    [2] K. F. Siburg, P. A. Stoimenov, A measure of mutual complete dependence, Metrika, 71 (2010), 239–251. doi: 10.1007/s00184-008-0229-9
    [3] S. Tasena, S. Dhompongsa, A measure of multivariate mutual complete dependence, Int. J. Approx. Reason., 54 (2013), 748–761. doi: 10.1016/j.ijar.2013.01.001
    [4] W. F. Darsow, E. T. Olsen, Norms for copulas, Int. J. Math. Math. Sci., 18 (1995), 576296.
    [5] H. Dette, K. F. Siburg, P. A. Stoimenov, A copula-based non-parametric measure of regression dependence, Scand. J. Stat., 40 (2013), 21–41. doi: 10.1111/j.1467-9469.2011.00767.x
    [6] Q. S. Shan, T. Wongyang, T. H. Wang, S. Tasena, A measure of mutual complete dependence in discrete variables through subcopula, Int. J. Approx. Reason., 65 (2015), 11–23. doi: 10.1016/j.ijar.2015.04.005
    [7] M. Sklar, Fonctions de répartition à n dimensions et leurs marges, Publ. inst. statist. univ. Paris, 8 (1959), 229–231.
    [8] G. Kauermann, C. Schellhase, D. Ruppert, Flexible copula density estimation with penalized hierarchical b-splines, Scand. J. Stat., 40 (2013), 685–705. doi: 10.1111/sjos.12018
    [9] C. Genest, E. Masiello, K. Tribouley, Estimating copula densities through wavelets, Insur. Math. Econ., 44 (2009), 170–181. doi: 10.1016/j.insmatheco.2008.07.006
    [10] M. Omelka, I. Gijbels, N. Veraverbeke, Improved kernel estimation of copulas: weak convergence and goodness-of-fit testing, Ann. Statist., 37 (2009), 3023–3058.
    [11] A. Charpentier, J. D. Fermanian, O. Scaillet, The estimation of copulas: Theory and practice, Copulas: From theory to application in finance, 2007, 35–60.
    [12] S. X. Chen, Beta kernel estimators for density functions, Comput. Statist. Data Anal., 31 (1999), 131–145. doi: 10.1016/S0167-9473(99)00010-9
    [13] G. Geenens, A. Charpentier, D. Paindaveine, Probit transformation for nonparametric kernel estimation of the copula density, Bernoulli, 23 (2017), 1848–1873.
    [14] A. Majdara, S. Nooshabadi, Nonparametric density estimation using copula transform, bayesian sequential partitioning, and diffusion-based kernel estimator, IEEE T. Knowl. Data En., 32 (2019), 821–826.
    [15] F. E. Harrell, C. E. Davis, A new distribution-free quantile estimator, Biometrika, 69 (1982), 635–640. doi: 10.1093/biomet/69.3.635
    [16] S. X. Chen, Beta kernel smoothers for regression curves, Stat. Sinica, 10 (2000), 73–91.
    [17] T. Nagler, Kernel methods for vine copula estimation, München: Universi at Munchen, 2014.
    [18] A. W. Van Der Vaart, J. A. Wellner, Weak convergence and empirical processes, Springer, 1996.
    [19] W. F. Darsow, B. Nguyen, E. T. Olsen, Copulas and markov processes, Illinois J. Math., 36 (1992), 600–642.
    [20] T. Nagler, kdecopula: An R package for the kernel estimation of copula densities, 2016, arXiv: 1603.04229.
    [21] X. Han, Z. L. Wang, M. Xie, Y. H. He, Y. Li, W. Z. Wang, Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence, Reliab. Eng. Syst. Safe., 210 (2021), 107560. doi: 10.1016/j.ress.2021.107560
    [22] Y. H. He, Z. X. Chen, Y. X. Zhao, X. Han, D. Zhou, Mission reliability evaluation for fuzzy multistate manufacturing system based on an extended stochastic flow network, IEEE T. Reliab., 69 (2019), 1239–1253.
    [23] D. Dua, C. Graff, UCI machine learning repository, Irvine, CA: University of California, school of information and computer acience. Available from: https://archive.ics.uci.edu/ml/index.php.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1776) PDF downloads(116) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog