
http://www.aimspress.com/journal/Math

AIMS Mathematics, 6(12): 13488–13502.
DOI:10.3934/math.2021782
Received: 13 May 2021
Accepted: 15 September 2021
Published: 18 September 2021

Research article

Nonparametric estimation of the measure of functional dependence

Qingsong Shan and Qianning Liu∗

Department of Statistics, Jiangxi University of Finance and Economics, Nanchang, China

* Correspondence: Email: qianningliu@outlook.com.

Abstract: In this paper, we propose a beta kernel estimator to measure functional dependence (MFD).
The MFD not only can measure the strength of linear or monotonic relationships, but it is also suitable
for more complicated functional dependence. We derive the asymptotic distribution of the proposed
estimator and then use several simulated examples to compare our estimator with the traditional
measures. Our simulation results demonstrate that beta kernel provides high accuracy in estimation. A
real data example is also given to illustrate one possible application of the new estimator.
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1. Introduction and motivation

The study of association or dependence plays an important role in statistics. One of the important
aspects of this is how to measure the strength of various associations among random variables.
Among the measures of associations between random variables, Pearson’s correlation coefficient,
Spearman’s ρ, and Kendall’s τ are the most prominent ones. But they only measure linear or
monotonic relationships, not suitable for a general nonlinear relationship. For example, when the
relationship between two random variables is parabolic-shaped, none of the measures above will be
applicable. Thus, a measure addressing this issue is desirable.

Two random variables are said to be mutually complete dependent (MCD) when they have mutual
functional relationship. This concept was first introduced by Lancaster [1]. This is also known as the
strongest dependence. In this relation, one variable is completely predictable of the other. Siburg and
Stoimenov [2] constructed a measure of MCD for continuous random variables. Tasena and
Dhompongsa [3] extended this measure to the multivariate case. In their papers, they proposed to
measure the distance between two copulas by a modified Sobolev norm. For details about inner
product and Sobolev norm on copula space, we refer to Darsow and Olsen [4].
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Dette et al. [5] found that a simple modification of the measure of MCD can be used to measure the
strength of functional dependence (MFD). Note that this functional dependence includes a wider range
of dependence since it could be nonlinear or even nonmonotonic. The discrete form of MFD was given
in Shan et al. [6]. Given the theoretical definition of MFD, the next question will be how to estimate it.
Similar to the measure of MCD, MFD is also constructed based on copula. So a straightforward way
of estimating MFD contains two steps. First, estimating the copula or its density. Second, using the
estimated copula or its density to estimate the MFD. Generally in step one, there are two approaches
to estimate the copula or its density, parametric way or nonparametric way. In the parametric way,
one assumes a parametric model for copula, and estimates its parameters by the method of maximum
likelihood (MLE). However, unlike distribution functions, the dependence structure, i.e., the copula, is
usually hidden behind the data set, which makes the claim of having prior knowledge of copula family
quite questionable. So in this paper, we will mainly consider the nonparametric way.

In this article, we propose estimating the MFD using the kernel method with the beta kernel. We
introduce the new estimators and study their asymptotic properties in Section 3. Using Monte Carlo
simulations, we investigate the finite sample performance of the proposed estimators relative to
traditional measures of dependence. Our simulation results, reported in Section 4, show that the new
estimators are accurate and stable with the choice of different parameters in a given model. In
Section 5, a real data example is used to illustrate the new estimators. The paper is concluded by some
remarks in Section 6.

2. Preliminaries

This section introduces some notations and concepts that will be used in the remainder of the
article. We will focus on bivariate continuous distributions. Consider an independent and identically
distributed sample (X1,Y1), · · · , (Xn,Yn) of a bivariate random vector (X,Y) with joint distribution
function H, and marginal distribution functions F and G, respectively. Then, by Sklar’s Theorem [7],
there exists a unique copula C : I2 = [0, 1]2 → I = [0, 1] such that

H(x, y) = C(F(x),G(y)). (2.1)

Therefore, the copula density is given by

c(F(x),G(y)) =
∂2

∂x∂y
C(F(x),G(y)). (2.2)

The measure of MCD is based on the norm of functions in the copula space C. The Sobolev norm
for copula takes the following form

‖C‖2 =

∫ 1

0

∫ 1

0

(∂C
∂u

)2

+

(
∂C
∂v

)2 dudv. (2.3)

The above norm has the following properties.

Proposition 1. The Sobolev norm for copulas satisfies ‖C‖2 ∈ [2/3, 1] for all C ∈ C. Moreover, the
following properties hold:
i. ‖C‖2 = 2/3 if and only if X and Y are independent.
ii. ‖C‖2 = 1 if and only if X and Y are MCD.
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Inspired by this proposition, Siburg and Stoimenov [2] proposed the measure of MCD, which can
be defined as follows.

Definition 1. Given two continuous random variables X,Y with copula C, we define

ρ(X,Y) = (3||C||2 − 2)1/2. (2.4)

ρ(X,Y) can be interpreted as a normalized Sobolev distance of C from the independent copula
denoted by Π:

ρ(X,Y) =
√

3||C − P|| =
||C − Π||

||Cm − Π||
,

where Cm is a MCD copula. A close look at the MCD shows that it can be decomposed into two
opposite functional dependencies, i.e., Y is a function of X and X is a function of Y . Therefore, the
measure of functional dependence (MFD) can be derived by modifying the measure for MCD, which
is the main idea of Dette et al. [5]. Its discrete form was discussed in Shan et al. [6]. The construction
of MFD is based on the following propositions.

Proposition 2. Let X and Y be two random variables with copula C. Then,

i. X and Y are independent if and only if ∂1CX,Y(u, v) = v for Lebesgue almost all (u, v) ∈ I2.

ii. Y is almost surely (a.s.) a Borel function of X if and only if ∂1CX,Y(u, v) ∈ {0, 1} for Lebesgue
almost all (u, v) ∈ I2.

Proposition 3. For any CX,Y ∈ C, we have ‖∂1CX,Y‖
2
2 ∈ [1/3, 1/2], Moreover,

i. ‖∂1CX,Y‖
2
2 = 1/3 if and only if X and Y are independent.

ii. ‖∂1CX,Y‖
2
2 = 1/2 if and only if Y is a.s. a Borel function of X.

Notice that ‖∂1CX,Y‖ reaches its boundaries at two extreme cases. ‖∂2CX,Y‖ has similar propositions
which we will not reproduce here. Using these definitions and propositions, we can define

ρ2
1(Y |X) = 6

∫ 1

0

∫ 1

0

(
∂C
∂u

)2

dudv − 2, (2.5)

ρ2
2(X|Y) = 6

∫ 1

0

∫ 1

0

(
∂C
∂v

)2

dudv − 2. (2.6)

This is a standardized form of ‖∂1CX,Y‖. Hence ρ1 inherits similar properties:
i. ρ1 = 0 if and only if X and Y are independent.
ii. ρ1 = 1 if and only if Y is a.s. a Borel function of X.
Similarly, ρ2 = 1 indicates X is a.s. a Borel function of Y . Those properties suggest that ρi(i = 1, 2)

can be used to measure functional dependence. We can assess the strength of dependence from the
magnitude of ρi.
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3. Nonparametric estimation

The measures ρ1, ρ2 and ρ are all constructed based on copulas. They both can be stated in terms of
copulas or copula densities. In other words, (2.5) can be written as

ρ2
1 = 6

∫ 1

0

∫ 1

0

(∫ v

0
c(u, y)dy

)2

dudv − 2, (3.1)

and (2.6) can be written as

ρ2
2 = 6

∫ 1

0

∫ 1

0

(∫ u

0
c(x, v)dx

)2

dudv − 2. (3.2)

Accordingly, there are two approaches to estimate the measures, through copula or its density. We
will focus on the latter in this paper.

The estimation of the copula density has been discussed in many papers. For example, Kauermann
et al. [8] estimated copula density with B-spline. Genest et al. [9] estimated copula density through
wavelets. It is recognized that the estimation of copula density involves more technical difficulties
than usual density estimation. One of the big issues in this respect is boundary bias. Several methods
have been proposed to address this issue. Omelka et al. [10] suggested an improved version of mirror-
reflection estimator. Charpentier et al. [11] suggested to use transformation estimator. Chen [12]
suggested to use beta kernels whose support matches the support of copulas. Geenens et al. [13] used
probit transformation to reduce boundary bias effect in kernel estimation of copula density. Majdara
and Nooshabadi [14] provides a novel method in estimating copula density in high dimension space.

Dette et al. [5] discussed the asymptotic behavior of the estimation ρ1 based on symmetric kernels
and Eq (2.5). In this paper, we will use the beta kernel in estimating ρ1 and ρ2. Beta kernel smoothing
was considered by Harrell and Davis [15]. Chen [12], Chen [16] applied beta kernel smoothing in
density estimation, and found that the beta estimator can reduce boundary bias and variance compared
with local linear estimators for densities with finite support. Following the same idea, Charpentier et
al. [11] proposed the beta kernel based estimator for copula density.

3.1. Nonparametric estimation of the copula density

Let (X1,Y1), (X2,Y2), · · · (Xn,Yn) be a sample from HX,Y(x, y) with unknown marginals. Denote the
copula corresponding to HX,Y(x, y) by C(u, v). We assume that both H and C are completely unknown.
We start by the most convenient situation in which we assume that the copula C is twice
differentiable. Let c denote the density of the copula. Usually copulas are estimated via
pseudo-observations (F̂(Xi), Ĝ(Yi)), where F̂ and Ĝ are the empirical distribution functions, i.e.,

U = F̂(x) =
1

n + 1

n∑
i=1

1(Xi ≤ x), and V = Ĝ(y) =
1

n + 1

n∑
i=1

1(Yi ≤ y), (3.3)

with 1(A) being the usual indicator function. The beta kernel based estimator of the copula density at
point (u, v) ∈ [0, 1]2 is

ĉh(u, v) =
1
n

n∑
i=1

K(Ui,
u
h

+ 1,
1 − u

h
+ 1)K(Vi,

v
h

+ 1,
1 − v

h
+ 1),
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where K(·, α, β) is the density of the beta distribution with parameters α and β, i.e.,

K(x, α, β) =
xα(1 − x)β

B(α, β)
, x ∈ [0, 1],

with B(α, β) = Γ(α + β)/Γ(α)Γ(β). For convenience, the same bandwidth is used in both kernels in
ĉh(u, v). Charpentier et al. [11] claimed the asymptotic normality of ĉh(u, v)by showing that, for all
(u, v) ∈ [0, 1]2,

√
nh[ĉh(u, v) − c(u, v)]

L
→ N(0, σ(u, v)2),

as nh → ∞ and h → 0, where “
L
→” means convergence in distribution. Nagler [17] provided detailed

proof and gave the bias and variance of ĉh(u, v) in Proposition 4. He also discussed bandwidth selection
for ĉh(u, v).

Proposition 4. Let c(u, v) be twice continuously differentiable on (0, 1)2, and hn → 0 and nhn → ∞ as
n→ ∞. Then, for all (u, v) ∈ (0, 1)2,

Bias[ĉh(u, v)] = hn[(1 − 2u)cu(u, v) + (1 − 2v)cv(u, v)

+
1
2

u(1 − u)cuu(u, v) +
1
2

v(1 − v)cvv(u, v) + o(hn),

Var[ĉh(u, v)] =
1

4nhhπ

c(u, v)
√

u(1 − u)v(1 − v)
+ o

(
1

nhn

)
.

Note that there is a little difference between Proposition 4, which is on the interior of (0, 1)2, and
Charpentier’s claim [11] , which is on the whole [0, 1]2. Since the definition of functional dependence
is based on the integration of copula densities, which will not be affected by the boundaries. We will
consider the whole [0, 1]2 in the remainder.

3.2. Nonparametric estimation of MFD via the copula density

Since all of the three measures, ρ1, ρ2 and ρ, are constructed in similar manner, we only take ρ1 as
an example and show how to estimate it through estimating the copula density using the beta kernel.
Let `∞([0, 1]2) be the space of the collection of all uniformly bounded real-valued functions defined on
[0, 1]2, equipped with the uniform metric m defined as

m( f1, f2) = sup
x∈[0,1]2

| f1(x) − f2(x)|, f1, f2 ∈ `
∞([0, 1]2). (3.4)

Define φi : `∞([0, 1]2)→ R, i = 1, 2, by

φ1 : c(u, v)→
∫ 1

0

∫ 1

0

(∫ v

0
c(u, y)dy

)2

dudv,

φ2 : c(u, v)→
∫ 1

0

∫ 1

0

(∫ u

0
c(x, v)dx

)2

dudv.

Then, the three measures, ρ2
1, ρ2

1 and ρ2, are functionals of c(·, ·). So, it suffices to show that φ1 and
φ2 are Hadamard differentiable.
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Theorem 1. Let c(u, v) be twice continuously differentiable on [0, 1]2, and h → 0 and nh → ∞ as
n→ ∞. Then,

√
nh(ρ̂2

1 − ρ
2
1)

L
→ φ′1(N(0, σ2(u, v))),

where φ′1(l(u, y)) =
∫ 1

0

∫ 1

0

(
2
∫ v

0
c(u, y)dy

∫ v

0
l(u, y)dy

)
dudv.

Proof. ρ1, ρ2 can be represented as a map φ1, φ2: `∞([0, 1]2)→ R([0, 1]) via ρ1 = φ1(c) and ρ2 = φ2(c),
respectively. The function space `∞([0, 1]2) is equipped with the uniform metric m. For all converging
sequences tn → 0 and ln → l such that c + tnln ∈ `

∞([0, 1]2) for every n, we have

φ1(c + tnln) − φ1(c)
tn

=
1
tn

∫ 1

0

∫ 1

0

(∫ v

0
(c(u, y) + tnln(u, y))dy

)2

−

(∫ v

0
(c(u, y))dy

)2 dudv

=

∫ 1

0

∫ 1

0

1
tn

(∫ v

0
(c(u, y) + tnln(u, y))dy +

∫ v

0
c(u, y)dy

)
·

(∫ v

0
(c(u, y) + tnln(u, y))dy −

∫ v

0
c(u, y)dy

)
dudv

=

∫ 1

0

∫ 1

0

(∫ v

0
(c(u, y) + tnln(u, y))dy +

∫ v

0
c(u, y)dy

)
·

(∫ v

0
(ln(u, y))dy

)
dudv.

So, the Hadamard derivative of φ1 at c is

φ′1(h) =

∫ 1

0

∫ 1

0

(
2
∫ v

0
c(u, y)dy

∫ v

0
l(u, y)dy

)
dudv.

Therefore, according to the Delta method [18],

φ′1(N(0, σ(u, v)2)) =

∫ 1

0

∫ 1

0

(
2
∫ v

0
c(u, y)dy

∫ v

0
N(0, σ(u, y)2)dy

)
dudv.

This completes the proof. �

The asymptotic distributions of ρ̂2
1 and ρ̂2 can be derived in exactly the same manner, so we omit

their details.

3.3. Nonparametric estimation of MFD via copula functions

In the following, we show that estimators of MFD through copula have the same asymptotic
distributions as those established through copula density. As an example, let’s check the asymptotic
distribution of ρ̂2.

Mapping a copula density to an MFD can be decomposed into two steps as follows

c
ϕ
−→ C

ψ
−→ MFD .

The first map is a double-integration that is linear and continuous, and thus, it is
Hadamard-differentiable. We only need to check the second map.
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Let D1
2([0, 1]2) be the Sobolev space, D1,D2 ∈ D

1
2([0, 1]2), and define the inner product

〈D1,D2〉 =

∫
[0,1]2
5D1 · 5D2dλ,

where 5 is gradient. The Sobolev norm induced by the inner product in D1
2([0, 1]2) is

|D|2 = 〈D,D〉 =

∫
[0,1]2

(∂D
∂u

)2

+

(
∂D
∂v

)2 dudv,

for D ∈ D1
2([0, 1]2).

Let C ⊂ D1
2([0, 1]2) be the copula space and C ∈ C is a copula. Define ψ : C 7→ R by ψ(C) = |C|2.

Then, the derivative of ψ at C along D is:

lim
n→∞

1
tn

(ψ(C + tnHn) − ψ(C)) = lim
n→∞

1
tn

(〈C + tnHn,C + tnHn〉 − 〈C,C〉)

= lim
n→∞

1
tn

(〈C,C〉 + 2〈tnHn,C〉 + 〈tnHn, tnHn〉 − 〈C,C〉)

= lim
n→∞

2〈Hn,C〉

= 2〈H,C〉.

The last step follows from Theorem 2.3 in [19]. This result shows the convergence of ρ̂2, and
straightforward calculations will show that it is consistent with the asymptotic distribution in
Theorem 1.

4. Implementation and simulations

4.1. Choosing the evaluation grid

In copula density estimation, Nagler [20] suggested using a grid that is equally spaced after a
transformation by the inverse Gaussian cdf, which is shown in Figure 1. Our simulation results below
show that evaluating copula density at a set of grid points in a similar pattern will improve the
accuracy of estimators of MCD. To compare the impact of the choice of grid, we considered two
copula families, the Gaussian copula with parameters 0, 0.1, 0.2, 0.5, 0.8, 0.9 and the Gumbel copula
with parameters 1, 10/9, 10/7, 10/3, 5, 10. Two samples of sizes 200 and 1000 were taken from each
copula, respectively. First, copula densities are estimated from each sample based on the KDEcopula
package. Then, the estimated copula density was evaluated on two sets of grid points: the usual grid
with equally spaced points and a normalized grid. From the discretized copula density, we calculate
the estimate of MFD. Figures 2 and 3 show the mean absolute error (MAE) of estimators with sample
size 200 and 1000 under 500 replication. In each case, we find the MAE of estimators based on an
equally spaced grid, labeled “equal”, are significantly higher than the MAE of the same estimators
based on the transformed grid, labeled “norm”.
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Figure 1. A grid which is equally spaced after inverse Gaussian cdf transformation.

Figure 2. MAE of estimators of MFD for samples drawn from normal copula.

Figure 3. MAE of estimators of MFD for samples drawn from Gumbel copula.

4.2. Simulation

In this section, we explore the finite sample performance of the proposed estimators using the mean
squared error (MSE). To put all estimators on the same scale, we standardize MFD. In other words,
we use ρ1, ρ2 and ρ. The corresponding estimators will be denoted by ρ̂1(Y | X), ρ̂2(X | Y) and
ρ̂(X,Y). For two-dimensional density estimation, using cross-validation to choose the bandwidth is
computationally expensive. Therefore, in all simulations, a rule-of-thumb bandwidth is used. More
precisely, the bandwidth is selected based on the asymptotic mean integrated squared error (AMISE)-
optimality with respect to the Frank copula. For further details on bandwidth selection in this context,
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we refer to Nagler [20]. In all simulations reported here, the integration is calculated over a grid of
30 × 30 points. For the choice of the grid, we adopt the method in Nagler [20]. That is, we apply the
Gaussian cumulative distribution function to equally spaced 30 knots on a line segment [−3, 3]. The
final two-dimensional grid is shown in Figure 1. This choice takes into account the fact that copula
densities usually have high fluctuation on the boundary and corners. Putting more evaluating points on
those regions will reduce approximation errors.

In Tables 1 and 2, we present the simulated MSE of the estimators of ρ1 and ρ2 for samples size
50, 100 and 200 for Gaussian copula. These results are based on 1000 replications. Both copulas are
generated by R package “copula”. We find that our estimators have reasonable precision in all cases.
As the sample size increases, MSE is getting smaller. And there is no significant difference in MSE for
different θ values, which indicates our estimator is stable for the choice of θ’s.

Table 1. Simulated MSE of the estimates when the underlying copula is Gaussian copula
with correlation θ.

n = 50 n = 100 n = 200
θ = 0 ρ̂1(Y | X) 2.3 × 10−3 1.5 × 10−3 8.0 × 10−4

ρ̂2(X | Y) 2.3 × 10−3 1.5 × 10−3 7.3 × 10−3

θ = 0.3 ρ̂1(Y | X) 6.1 × 10−3 3.8 × 10−3 2.2 × 10−3

ρ̂2(X | Y) 6.2 × 10−3 3.8 × 10−3 2.1 × 10−3

θ = 0.6 ρ̂1(Y | X) 8.8 × 10−3 4.2 × 10−3 2.1 × 10−3

ρ̂2(X | Y) 8.9 × 10−3 4.1 × 10−3 2.1 × 10−3

θ = 0.9 ρ̂1(Y | X) 2.5 × 10−3 1.1 × 10−3 4.9 × 10−4

ρ̂2(X | Y) 2.3 × 10−3 1.1 × 10−3 5.0 × 10−4

Table 2. Simulated MSE of the estimates when the underlying copula is Clayton copula with
parameter θ.

n = 50 n = 100 n = 200
θ = 0.2 ρ̂1(Y | X) 3.7 × 10−3 2.3 × 10−3 1.8 × 10−3

ρ̂2(X | Y) 3.7 × 10−3 2.3 × 10−3 1.8 × 10−3

θ = 0.5 ρ̂1(Y | X) 7.2 × 10−3 4.0 × 10−3 2.3 × 10−3

ρ̂2(X | Y) 7.2 × 10−3 4.1 × 10−3 2.3 × 10−3

θ = 1 ρ̂1(Y | X) 9.3 × 10−3 4.9 × 10−3 2.6 × 10−3

ρ̂2(X | Y) 9.3 × 10−3 4.9 × 10−3 2.5 × 10−3

θ = 2 ρ̂1(Y | X) 7.5×10−3 3.5×10−3 1.8×10−3

ρ̂2(X | Y) 7.4×10−3 3.5×10−3 1.9×10−3

θ = 5 ρ̂1(Y | X) 3.1 × 10−3 1.2 × 10−3 6.1 × 10−4

ρ̂2(X | Y) 3.1 × 10−3 1.2 × 10−3 6.0 × 10−4

4.3. Comparison of measures

In the second part of the simulation, we will compare the performance of MFDs with other
measures of dependence, e.g., linear correlation coefficient r, Spearman’s ρ and Kendall’s τ under
several different types of relationships. We choose three different dependence structures: elliptical
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distributions, monotonic dependence and regressional dependence, represented by normal copula,
cubic function and quadratic function, respectively.

The first example is a quadratic function. 500 data are generated from the following model,

Y = X2 + ε, (4.1)

where ε ∼ N(0, σ) and σ = 1, 5, and 10, respectively (see Figure 4). To obtain the copula data,
we apply the empirical marginal distributions to the data, i.e., apply a rank transformation as shown
in (3.3) to the data generated by the model (4.1). Then beta kernel estimation is applied to get the
estimations of ρ1 and ρ2.

(a) σ = 1 (b) σ = 5 (c) σ = 10

Figure 4. Scatter plot of model Y = X2 + ε, sample size N = 500.

Obviously, neither Spearman’s ρ nor Kendall’s τ is suitable for this situation. The simulation results
in Table 3 also showed that they are almost 0 in all cases. ρ̂(X,Y), on the other hand, is much higher than
both Spearman’s ρ and Kendall’s τ, especially for small σ. This indicates that the type of dependence
is functional, not monotonic. And the magnitude of ρ̂(X,Y) tells that the strength of dependence is
getting weaker as σ increases. In a comparison of ρ̂1(Y | X) and ρ̂2(X | Y), we find that functional
dependence is stronger in the Y to X direction than the other direction since ρ̂1(Y | X) is higher. Again,
as σ increases, the strength of dependence in this direction is also getting weaker.

Table 3. Estimators based on a sample of size 500 when the underlying relationship is a
parabola.

ρ̂1(Y | X) ρ̂2(X | Y) ρ̂(X,Y) Spearman’s ρ Kendall’s τ
σ=1 0.51 0.25 0.40 -0.01 -0.02
σ=5 0.41 0.20 0.32 -0.02 -0.02
σ=10 0.27 0.13 0.21 -0.01 -0.01

To compare the performance of MFD with Kendall’s τ and Spearman’s ρ in monotonic dependence.
500 data are generated from the following model,

Y = X3 + ε, (4.2)

where ε ∼ N(0, σ) and σ = 1, 5 and 10. The scatter plot of model (4.2) is in Figure 5 and the simulation
results are in Table 4. As shown in Table 4, the values of MFD has a similar decreasing pattern as the

AIMS Mathematics Volume 6, Issue 12, 13488–13502.



13498

other two measures when σ increases. Indeed, a cubic function is one type of functional dependence,
so MFDs are capable of measuring the strength of monotonic dependence. The values of ρ̂1(Y | X) and
ρ̂2(X | Y), which measure the strength of functional dependence in two directions (Y to X and X to Y)
separately, are close to each other, obviously this is because model (4.2) is symmetric.

(a) σ = 1 (b) σ = 5 (c) σ = 10

Figure 5. Scatter plot of model Y = X3 + ε, sample size N = 500.

Table 4. Estimators based on a sample of size 500 when the underlying relationship is cubic.

ρ̂1(Y | X) ρ̂2(X | Y) ρ̂(X,Y) Spearman’s ρ Kendall’s τ
σ=1 0.89 0.89 0.89 0.82 0.95
σ=5 0.63 0.62 0.63 0.55 0.74
σ=10 0.42 0.41 0.41 0.35 0.50

Next, we take into account the Pearson’s correlation coefficient. We take normal copulas as an
example, which is

Cr(u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

1 − r2
exp

{
−

t2 + s2 − 2rts
2(1 − r2)

}
dtds, (4.3)

with r = 0.1, 0.5 and 0.9. The scatter plots of Gaussian copulas are in Figure 6. Table 5 shows the
simulation results. As expected, those measures show no significant difference in measuring the
dependence of elliptical distributions.

Table 5. Estimators based on a sample of size 500 when the underlying copula is Gaussian
copula.

ρ̂1(Y | X) ρ̂2(X | Y) ρ̂(X,Y) Spearman’s ρ Kendall’s τ
r = 0.1 0.09 0.09 0.09 0.08 0.11
r = 0.5 0.33 0.33 0.33 0.29 0.42
r = 0.9 0.73 0.73 0.73 0.68 0.87
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(a) r = 0.1 (b) r = 0.5 (c) r = 0.9

Figure 6. Normal copulas with parameter r.

The comparison of MFDs with other measures in models 4.1–4.3 shows that MFDs have good
adaptability for different types of relationships.

5. Application

The measurement of functional relationships has many possible applications ([21, 22]). The
Communities and Crime Data Set [23] contains community crime rate of 1994 communities with 123
possibly related variables. We will use functional dependence measure as a criteria for variable
selection to choose the variables which have the most impact on community crime rate. We calculate
the measures ρ, ρ1, and ρ2 given in Eqs (2.4)–(2.6), respectively by using beta kernel estimation for
community crime rate and each of other variables. Variables with higher values of the measures have
a greater impact on community crime rate. The Table 6 shows 9 variables with highest functional
dependence measures and Table 7 gives the explanation of the abbreviations. Notice that the measures
can detect strong non-linear relationships. As shown in Figure 7, two of the selected variables
(PctIlleg and racePctWhite), showed clear nonlinear relations with the crime rate.

Table 6. 15 Variables with highest scores in functional dependence measure.

Variable ρ̂1(Y | X) ρ̂2(X | Y) ρ̂(X,Y)
1 PctKids2Par 0.56 0.57 0.57
2 PctIlleg 0.53 0.54 0.54
3 PctFam2Par 0.53 0.54 0.53
4 NumIlleg 0.52 0.53 0.53
5 PctTeen2Par 0.49 0.49 0.49
6 racePctWhite 0.49 0.49 0.49
7 FemalePctDiv 0.49 0.49 0.49
8 NumUnderPov 0.48 0.48 0.48
9 TotalPctDiv 0.48 0.48 0.48
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Table 7. Selected variables for the communities crime rate data.

Variable Attribute
PctKids2Par Percentage of kids in family housing with two parents
PctIlleg Percentage of kids born to never married
PctFam2Par Percentage of families (with kids) that are headed by two parents
NumIlleg Number of kids born to never married
PctTeen2Par Percent of kids age 12–17 in two parent households
racePctWhite Percentage of population that is caucasian
FemalePctDiv Percentage of females who are divorced
NumUnderPov Number of people under the poverty level
TotalPctDiv Percentage of population who are divorced

Figure 7. Scatter plot and kernel density estimation of community crime rate and other
variables.

6. Discussion

This paper showed that, compared with Spearman’s ρ or Kendall’s τ, the measures of functional
relationship could not only measure the strength of a relationship but also indicate the direction of a
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possible functional relationship. We provide a novel method to estimate the measures of functional
relationships. The simulation results showed that they have fairly good accuracy.

Although MFD can quantify the strength of functional dependence, it doesn’t suggest any specific
form of the function. So one possible application of this measure is in variable selection. We use MFD
to filter out the less correlated variables, then use parametric or nonparametric methods to construct a
predicting model. In the community crime data example, we showed that MFD could detect nonlinear
relationship, but as for how many variables should be retained, in other words, how to set up the
threshold of MFD in variable selection is a question that needs to be discussed and may involve some
subjective opinions. After the desired number of variables are chosen, people may use either parametric
or non-parametric methods to set up the model.
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