Research article

On the improved thinning risk model under a periodic dividend barrier strategy

  • Received: 14 April 2021 Accepted: 14 September 2021 Published: 18 September 2021
  • MSC : 91B30, 97M30

  • In this study, we consider a periodic dividend barrier strategy in an improved thinning risk model, which indicates that insurance companies randomly receive premiums and pay dividends. In the improved model, the premium is stochastic, and the claim counting process is a p-thinning process of the premium counting process. The integral equations satisfied by the Gerber-Shiu function and the expected discounted cumulative dividend function are derived. Explicit expressions of those actuarial functions are obtained when the claim and premium sizes are exponentially distributed. We analyze and illustrate the impact of various parameters on them and obtain the optimal barrier. Finally, a conclusion is drawn.

    Citation: Fuyun Sun, Yuelei Li. On the improved thinning risk model under a periodic dividend barrier strategy[J]. AIMS Mathematics, 2021, 6(12): 13448-13463. doi: 10.3934/math.2021779

    Related Papers:

  • In this study, we consider a periodic dividend barrier strategy in an improved thinning risk model, which indicates that insurance companies randomly receive premiums and pay dividends. In the improved model, the premium is stochastic, and the claim counting process is a p-thinning process of the premium counting process. The integral equations satisfied by the Gerber-Shiu function and the expected discounted cumulative dividend function are derived. Explicit expressions of those actuarial functions are obtained when the claim and premium sizes are exponentially distributed. We analyze and illustrate the impact of various parameters on them and obtain the optimal barrier. Finally, a conclusion is drawn.



    加载中


    [1] W. Yu, P. Guo, Q. Wang, G. Guan, Y. Huang, X. Yu, Randomized observation periods for compound Poisson risk model with capital injection and barrier dividend, Adv. Differ. Equ., 220 (2021), 220.
    [2] W. Yu, P. Guo, Q. Wang, G. Guan, Q. Yang, Y. Huang, et al., On a periodic capital injection and barrier dividend strategy in the compound Poisson risk model, Mathematics, 8 (2020), 511. doi: 10.3390/math8040511
    [3] A. V. Boikov, The Cramér-Lundberg model with stochastic premium process, Theory Probab. Appl., 47 (2003), 489–493. doi: 10.1137/S0040585X9797987
    [4] C. Labbé, K. P. Sendova, The expected discounted penalty function under a risk model with stochastic income, Appl. Math. Comput., 215 (2009), 1852–1867.
    [5] T. A. Belkina, N. B. Konyukhova, S. V. Kurochkin, Singular boundary value problem for the integro-differential equation in an insurance model with stochastic premiums: Analysis and numerical solution, Comput. Math. Math. Phys., 52 (2012), 1384–1416. doi: 10.1134/S0965542512100077
    [6] H. Albrecher, O. J. Boxma, A ruin model with dependence between claim sizes and claim intervals, Insur. Math. Econ., 35 (2004), 245–254. doi: 10.1016/j.insmatheco.2003.09.009
    [7] G. Wang, K. C Yuen, On a correlated aggregate claims model with thinning-dependence structure, Insur. Math. Econ., 36 (2005), 456–468. doi: 10.1016/j.insmatheco.2005.04.004
    [8] J. Pan, G. Wang, Expected discounted penalty function for a thinning risk model, Chin. J. Appl. Probab. Stat., 25 (2009), 544–552.
    [9] M. Boudreault, H. Cossette, D. Landriault, E. Marceau, On risk model with dependence between interclaim arrivals and claim sizes, Scand. Actuar. J., 5 (2006), 265–285.
    [10] H. Albrecher, C. Constantinescu, S. Loisel, Explicit ruin formulas for models with dependence among risks, Insur. Math. Econ., 48 (2011), 265–270. doi: 10.1016/j.insmatheco.2010.11.007
    [11] M. Vidmar, Ruin under stochastic dependence between premium and claim arrivals, Scand. Actuar. J., 2018 (2018), 505–513. doi: 10.1080/03461238.2017.1391114
    [12] B. De Finetti, Su un'impostazione alternativa della teoria collettiva del rischio, Transactions of The XVth International Congress of Actuaries, 2 (1957), 433–443.
    [13] C. Yin, K. C. Yuen, Optimality of the threshold dividend strategy for the compound Poisson model, Stat. Probab. Lett., 81 (2011), 1841–1846. doi: 10.1016/j.spl.2011.07.022
    [14] H. Albrecher, E. C. Cheung, S. Thonhauser, Randomized observation periods for the compound poisson risk model: Dividends, ASTIN Bull., 41 (2011), 645–672.
    [15] K. Noba, J. L. Pérez, K. Yamazaki, K. Yano, On optimal periodic dividend strategies for Lévy risk processes, Insur. Math. Econ., 80 (2018), 29–44. doi: 10.1016/j.insmatheco.2018.02.004
    [16] Z. Zhang, E. C. Cheung, H. Yang, On the compound poisson risk model with periodic capital injections, ASTIN Bull., 48 (2018), 435–477. doi: 10.1017/asb.2017.22
    [17] B. Avanzi, E. C. Cheung, B. Wong, J. K. Woo, On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvency, Insur. Math. Econ., 52 (2013), 98–113. doi: 10.1016/j.insmatheco.2012.10.008
    [18] J. Song, F. Sun, The dual risk model under a mixed ratcheting and periodic dividend strategy, Commun. Stat. Theory Methods, in press.
    [19] D. Peng, D. Liu, Z. Liu, Dividend problems in the dual risk model with exponentially distributed observation time, Stat. Probab. Lett., 83 (2013), 841–849. doi: 10.1016/j.spl.2012.11.025
    [20] M. C. Choi, E. C. Cheung, On the expected discounted dividends in the Cramér-Lundberg risk model with more frequent ruin monitoring than dividend decisions, Insur. Math. Econ., 59 (2014), 121–132. doi: 10.1016/j.insmatheco.2014.08.009
    [21] B. Avanzi, V. Tu, B. Wong, On optimal periodic dividend strategies in the dual model with diffusion, Insur. Math. Econ., 55 (2014), 210–224. doi: 10.1016/j.insmatheco.2014.01.005
    [22] B. Avanzi, V. Tu, B. Wong, Optimal dividends under Erlang$(2)$ inter-dividend decision times, Insur. Math. Econ., 79 (2018), 225–242. doi: 10.1016/j.insmatheco.2018.01.009
    [23] H. U. Gerber, E. S. Shiu, On the time value of ruin, N. Am. Actuar. J., 2 (1998), 48–72.
    [24] D. C. Dickson, C. Hipp, On the time to ruin for Erlang(2) risk processes, Insur. Math. Econ., 29 (2001), 333–344. doi: 10.1016/S0167-6687(01)00091-9
    [25] S. Li, J. Garrido, On a general class of renewal risk process: Analysis of the Gerber-Shiu function, Adv. Appl. Probab., 37 (2005), 836–856. doi: 10.1239/aap/1127483750
    [26] E. J. Baurdoux, J. C. Pardo, J. L. Pérez, J. F. Renaud, Gerber-Shiu distribution at Parisian ruin for Lévy insurance risk processes, J. Appl. Probab., 53 (2016), 572–584. doi: 10.1017/jpr.2016.21
    [27] E. C. Cheung, D. Landriault, G. E. Willmot, J. K. Woo, Structural properties of Gerber-Shiu functions in dependent Sparre Andersen models, Insur. Math. Econ., 46 (2010), 117–126. doi: 10.1016/j.insmatheco.2009.05.009
    [28] S. Li, Y. Lu, K. P. Sendova, The expected discounted penalty function: From infinite time to finite time, Scand. Actuar. J., 2019 (2019), 336–354. doi: 10.1080/03461238.2018.1560955
    [29] W. Wang, Z. Zhang, Computing the Gerber-Shiu function by frame duality projection, Scand. Actuar. J., 219 (2019), 291–307.
    [30] L. Zhang, The Erlang($n$) risk model with two-sided jumps and a constant dividend barrier, Commun. Stat. Theory Methods, 2020 (2020), 1–19.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1757) PDF downloads(75) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog