Research article

Some Ostrowski type inequalities via $ n $-polynomial exponentially $ s $-convex functions and their applications

  • Received: 13 June 2021 Accepted: 09 September 2021 Published: 16 September 2021
  • MSC : 26A51, 26A33, 26D07, 26D10, 26D15

  • This paper deals with introducing and investigating a new convex mapping namely, $ n $-polynomial exponentially $ s $-convex. Here, we present some algebraic properties and some logical examples to validate the theory of newly introduced convexity. Some novel adaptations of the well-known Hermite-Hadamard and Ostrowski type inequalities for this convex function have been established. Additionally, some special cases of the newly established results are derived as well. Finally, as applications some new limits for special means of positive real numbers are given. These new outcomes yield a few generalizations of the earlier outcomes already published in the literature.

    Citation: Muhammad Tariq, Soubhagya Kumar Sahoo, Jamshed Nasir, Hassen Aydi, Habes Alsamir. Some Ostrowski type inequalities via $ n $-polynomial exponentially $ s $-convex functions and their applications[J]. AIMS Mathematics, 2021, 6(12): 13272-13290. doi: 10.3934/math.2021768

    Related Papers:

  • This paper deals with introducing and investigating a new convex mapping namely, $ n $-polynomial exponentially $ s $-convex. Here, we present some algebraic properties and some logical examples to validate the theory of newly introduced convexity. Some novel adaptations of the well-known Hermite-Hadamard and Ostrowski type inequalities for this convex function have been established. Additionally, some special cases of the newly established results are derived as well. Finally, as applications some new limits for special means of positive real numbers are given. These new outcomes yield a few generalizations of the earlier outcomes already published in the literature.



    加载中


    [1] B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Spaces. Appl., 2012 (2012), 980438.
    [2] K. Mehren, P. Agarwal, New Hermite-Hadamard type integral inequalities for the convex functions and theirs applications, J. Comp. Appl. Math., 350 (2019), 274–285. doi: 10.1016/j.cam.2018.10.022
    [3] S. I. Butt, A. Kashuri, M. Tariq, J. Nasir, A. Aslam, W. Geo, $n$-polynomial exponential-type $p$-convex function with some related inequalities and their applications, Heliyon, 6 (2020), e05420. doi: 10.1016/j.heliyon.2020.e05420
    [4] K. S. Zhang, J. P. Wan, $p$-convex functions and their applications, Pure. Appl. Math., 23 (2017), 130–133.
    [5] S. I. Butt, M. Tariq, A. Aslam, H. Ahmad, T. A. Nofel, Hermite-Hadamard type inequalities via generalized harmonic exponential convexity, J. Funct. Spaces., 2021 (2021), 5533491.
    [6] S. I. Butt, M. Nadeem, S. Qaisar, A. O. Akdemir, T. Abdeljawad, Hermite-Jensen-Mercer type inequalities for conformable integrals and related results, Adv. Differ. Equ., 2020 (2020), 501. doi: 10.1186/s13662-020-02968-4
    [7] P. O. Mohammed, H. Aydi, A. Kashuri, Y. S. Hamed, K. M. Abualnaja, Midpoint inequalities in fractional calculus defined using positive weighted symmetry function kernels, Symmetry, 13 (2021), 550. doi: 10.3390/sym13040550
    [8] S. I. Butt, A. Kashuri, M. Tariq, J. Nasir, A. Aslam, W. Geo, Hermite-Hadamard-type inequalities via $n$-polynomial exponential-type convexity and their applications, Adv. Differ. Equ., 2020 (2020), 508. doi: 10.1186/s13662-020-02967-5
    [9] D. S. Mitrinovic, J. Pecaric, A. M. Fink, Inequalities involving functions and their integrals and derivatives, Springer Science and Business Media, 1991.
    [10] M. Alomari, M. Darus, Some Ostrowski type inequalities for quasi-convex functions with applications to special means, RGMIA Res. Rep. Coll., 13 (2010), 1–9.
    [11] M. Alomari, M. Darus, S. S. Dragomir, P. Cerone, Ostrowski type inequalities for functions whose derivatives are $s$-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071–1076. doi: 10.1016/j.aml.2010.04.038
    [12] S. S. Dragomir, On the Ostrowski's integral inequality for mappings with bounded variation and applications, RGMIA Res. Rep. Coll., 2 (1999), 63–69.
    [13] E. Set, M. Z. Sarikaya, M. E. Özdemir, Some Ostrowski's type inequalities for functions whose second derivatives are $s$-convex in the second sense and applications, arXiv, 2010. Available from: https://arXiv.org/abs/1006.2488.
    [14] B. G. Pachpatte, On an inequality of Ostrowski type in three independent variables, J. Math. Anal. Appl., 249 (2000), 583–591. doi: 10.1006/jmaa.2000.6913
    [15] M. Tariq, J. Nasir, S. K. Sahoo, A. A. Mallah, A note on some Ostrowski type inequalities via generalized exponentially convexity, J. Math. Anal. Model., 2 (2021), 1–15. doi: 10.48185/jmam.v2i1.127
    [16] M. Tariq, S. K. Sahoo, J. Nasir, S. K. Awan, Some Ostrowski type integral inequalities using hypergeometric functions, J. Fractional Calculus Nonlinear Syst., 2 (2021), 24–41. doi: 10.48185/jfcns.v2i1.240
    [17] Z. Meng, Z. Zhang, H. Zhou, A novel experimental data-driven exponential convex model for reliability assessment with uncertain-but-bounded parameters, App. Math. Model., 77 (2020), 773–787. doi: 10.1016/j.apm.2019.08.010
    [18] Z. Meng, H. Zhou, New target performance approach for a super parametric convex model of non-probabilistic reliability-based design optimization, Comp. Meth. App. Mech. Eng., 339 (2018), 644–662. doi: 10.1016/j.cma.2018.05.009
    [19] G. Brown, Some inequalities that arise in measure theory, J. Aust. Math. Soc., 45 (1988), 83–94. doi: 10.1017/S1446788700032298
    [20] H. Hudzik, L. Maligranda, Some remarks on $s$-convex functions, Aeq. Math, 48 (1994), 100–111. doi: 10.1007/BF01837981
    [21] S. S. Dragomir, S. Fitzpatrik, The Hadamard inequality for $s$-convex functions in the second sense, Demonstr. Math., 32 (1999), 687–696.
    [22] S. Özcan, İ. İşcan, Some new Hermite-Hadamard type inequalities for $s$-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 201. doi: 10.1186/s13660-019-2151-2
    [23] C. P. Niculescu, L. E. Persson, Convex functions and their applications, New York: Springer, 2006.
    [24] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [25] E. Set, M. E. Özdemir, M. Z. Sarikaya, New inequalities of Ostrowski's type for $s$-convex functions in the second sense with applications, arXiv, 2010. Available from: https://arXiv.org/abs/1005.0702.
    [26] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen, Pupl. Inst. Math., 23 (1978), 13–20.
    [27] M. Kadakal, İ. İşcan, Exponential type convexity and some related inequalities, J. Inequal. Appl., 2020 (2020), 82. doi: 10.1186/s13660-020-02349-1
    [28] T. Toplu, M. Kadakal, İ. İşcan, On $n$-polynomial convexity and some relatd inequalities, AIMS Math., 5 (2020), 1304–1318. doi: 10.3934/math.2020089
    [29] P. Cerone, S. S. Dragomir, Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions, Demonstr. Math., 37 (2004), 299–308. doi: 10.1515/dema-2004-0208
    [30] J. Wang, S. I. Butt, A. Kashuri, M. Tariq, New integral inequalities using exponential type convex functions with applications, AIMS Math., 6 (2021), 7684–7703. doi: 10.3934/math.2021446
    [31] H. X. Qi, M. Yussouf, S. Mehmood, Y. M. Chu, G. Farid, Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity, AIMS Math., 5 (2020), 6030–6042. doi: 10.3934/math.2020386
    [32] S. Naz, M. N. Naeem, Y. M. Chu, Ostrowski-type inequalities for $n$-polynomial $\mathscr{P}$-convex function for $k$-fractional Hilfer-Katugampola derivative, J. Inequal. Appl., 2021 (2021), 117. doi: 10.1186/s13660-021-02657-0
    [33] S. I. Butt, H. Budak, M. Tariq, M. Nadeem, Integral inequalities for $n$-polynomial $s$-type preinvex functions with applications, Math. Meth. App. Sci., 44 (2021), 11006–11021. doi: 10.1002/mma.7465
    [34] E. R. Nwaeze, M. A. Khan, A. Ahmadian, M. N. Ahmad, A. K. Mahmood, Fractional inequalities of the Hermite-Hadamard type for $ m $-polynomial convex and harmonically convex functions, AIMS Math., 6 (2021), 1889–1904. doi: 10.3934/math.2021115
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1642) PDF downloads(69) Cited by(11)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog