Research article

Existence and stability of solutions of $ \psi $-Hilfer fractional functional differential inclusions with non-instantaneous impulses

  • Received: 20 April 2021 Accepted: 14 July 2021 Published: 26 July 2021
  • MSC : Primary 26A33, 34A08; Secondary 34A60

  • In this paper, we prove two existence results of solutions for an $ \psi $-Hilfer fractional non-instantaneous impulsive differential inclusion in the presence of delay in an infinite dimensional Banah spaces. Then, by using the multivalued weakly Picard operator theory, we study the stability of solutions for the considered problem in the sense of $ \psi $-generalized Ulam-Hyers. To achieve our aim, we present a relation between any solution of the considered problem and the corresponding fractional integral equation. The given problem here is new because it contains a delay and non-instantaneous impulses effect. Examples are given to clarify the possibility of applicability our assumptions.

    Citation: A.G. Ibrahim, A.A. Elmandouh. Existence and stability of solutions of $ \psi $-Hilfer fractional functional differential inclusions with non-instantaneous impulses[J]. AIMS Mathematics, 2021, 6(10): 10802-10832. doi: 10.3934/math.2021628

    Related Papers:

  • In this paper, we prove two existence results of solutions for an $ \psi $-Hilfer fractional non-instantaneous impulsive differential inclusion in the presence of delay in an infinite dimensional Banah spaces. Then, by using the multivalued weakly Picard operator theory, we study the stability of solutions for the considered problem in the sense of $ \psi $-generalized Ulam-Hyers. To achieve our aim, we present a relation between any solution of the considered problem and the corresponding fractional integral equation. The given problem here is new because it contains a delay and non-instantaneous impulses effect. Examples are given to clarify the possibility of applicability our assumptions.



    加载中


    [1] E. Hernandez, D. O'Regan, On a new class of abstract impulsive differential equation, Proc. Amer. Math. Soc., 141 (2013), 1641–1649.
    [2] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 1999.
    [3] S. Saravanakumar, P. Balasubramaniam, Non-instantaneous impulsive Hilfer fractional stochastic differential equations driven by fractional Brownian motion, Stoch. Anal. Appl., 39 (2021), 549–566. doi: 10.1080/07362994.2020.1815545
    [4] X. B. Shu, Y. Shi, A study on the mild solution of impulsive fractional evolution equations, Appl. Math. Comput., 273 (2016), 465–470.
    [5] J. R. Wang, A. G. Ibrahim, D. O'Regan, Global Attracting Solutions to Hilfer fractional non-instantaneous impulsive semilinear differential inclusions of Sobolev type and with nonlocal conditions, Nonl. Anal.: Model. Control, 24 (2019), 775–803.
    [6] V. H. Ngo, D. O'Regan, A remark on $\psi -$Hilfer fractional differential equations with non-instantaneous impulses, Math. Meth. Appl. Sci., 43 (2020), 1–15. doi: 10.1002/mma.5729
    [7] H. M. Ahmed, M. M. El-Borai, H. M. El-Owaidy, A. S. Ghanem, Impulsive Hilfer fractional differential equations, Adv. Difference Equations, 226 (2018).
    [8] K. M. Furati, M. D. Kassim, N. E. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Computers Math Appl., 64 (2012), 1616–1628. doi: 10.1016/j.camwa.2012.01.009
    [9] A. G. Ibrahim, A. A. Elmandouh, Euler-Lagrange equations for variational problems involving the Riesz-Hilfer fractional derivative, J. Taibah University Sci., 14 (2020), 678–696. doi: 10.1080/16583655.2020.1764245
    [10] J. R. Wang, A. G. Ibrahim, D. O'Regan, Hilfer type fractional differential switched inclusions with non-instantaneous impulsive and nonlocal conditions, Nonlinear Anal.: Model. Control, 23 (2018), 921–941. doi: 10.15388/NA.2018.6.7
    [11] J. R. Wang, A. G. Ibrahim, D. O'Regan, A general class of non-instantaneous impulsive semilinear differential inclusions in Banach spaces, Adv. Difference Equations, 2017 (2017), 287. Doi: 10.1186/s13662-017-1342-8. doi: 10.1186/s13662-017-1342-8
    [12] J. R. Wang, M. Fečkan, A general class of impulsive evolution equations, Topol. Methods Nonlinear Anal., 46 (2015), 915–933.
    [13] J. R. Wang, M. Li, D. O'Regan, Robustness for nonlinear evolution equation with non-instantaneous effects, Bull. des Sci. Math., 159 (2020), 102827. doi: 10.1016/j.bulsci.2019.102827
    [14] S. M. Ulam, A collection of Mathematical Problems, Interscience Publishers, New York, 1968.
    [15] Y. Guo, X. B. Shu, Y. Li, F. Xu, The existence and Hyers-Ulam stability of solution for an impulsive Riemann-Liouville fractional neutral functional stochastic differential equation with infinite delay of order $\alpha \in (1, 2)$, Boundary Value Probl., 2019 (2019), 59. doi: 10.1186/s13661-019-1172-6
    [16] Y. Guo, M. Chen, X. B. Shu, F. Xu, The existence and Hyers-Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm, Stoch. Anal. Appl., 39 (2020), 1–24.
    [17] J. Vanterler da Sousa, Kishor D. kucche, E. Capelas de Oliveira, Stability of $\psi -$Hilfer fractional differential equations, Appl. Math. Lett., 88 (2019), 73–80. doi: 10.1016/j.aml.2018.08.013
    [18] J. Vanterler da C. Sousa, E. Capelas de Oliveira, Ulam-Hyers stability of nonlinear fractional integro-differential equation, Appl. Math. Lett., 81 (2018), 50–55. doi: 10.1016/j.aml.2018.01.016
    [19] M. Benchohra, S. Bouriah, J. J. Nieto, Existence and Ulam stability for nonlinear implicit differential equations with Riemann-Liouville fractional derivative, Demonstr. Math., 52 (2019), 437–450. doi: 10.1515/dema-2019-0032
    [20] V. Kumar, M. Malik, Existence and stability of fractional integro differential equation with nonimstantaneous integrable impulses and periodic boundary condition on time scales, J. King Saud University-Science, 13 (2019), 1311–1317.
    [21] A. Ben Makhlouf, D. Boucenna, A. Hammani, Existence and stability results for generalized fractional differential equations, Acta Mathematica Scientia, 40 (2020), 141–154. doi: 10.1007/s10473-020-0110-3
    [22] A. M. Elsayed, S. Harikrishnan, K. Kanagarajan, On the existence and stability of boundary value problem for differential equation with Hilfer-Katugampola fractional derivative, Acta Mathematica Scientia, 39 (2019), 1568–1578. doi: 10.1007/s10473-019-0608-5
    [23] P. Gavruta, S. M. Jung, Y. Li, Hyers-Ulam stability for second-order linear differential equations with boundary conditions, Electron. J. Differ. Eq., 80 (2011), 1–5.
    [24] D. H. Hyers, G. Isac, Th. M. Rassias, Stability of functional equations in several variables, Birkräuser, 1998.
    [25] X. Li, J. Wang, Ulam-Hyers-Rassias stability of semilinear differential equations with impulses, Electron. J. Differ. Eq., 172 (2013), 1–8.
    [26] N. Lungu, D. Popa, Hyers-Ulam stability of a first order partial differential equation, J. Math. Anal. Appl., 385 (2012), 86–91. doi: 10.1016/j.jmaa.2011.06.025
    [27] C. Parthasarathy, Existence and Hyers-Ulam stability of nonlinear impulsive differential equations with nonlocal condotions, Electron. J. Math. Anal. Appl., 4 (2016), 106–115.
    [28] M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72 (1987), 297–300.
    [29] J. R. Wang, Y. Zhou, On the stability of new impulsive ordinary differential equations, Topol. Methods Nonlinear Anal., 46 (2015), 303–314. doi: 10.12775/TMNA.2015.048
    [30] J. R. Wang, Y. Zhou, Existence and stability of solutions to nonlinear impulsive differential equations in $\nu $-normed spaces, Electron J. Differential Equation, 38 (2014), 1–10.
    [31] S. Abbas, M. Benchohra, J. E. Lagreg, A. Alsaedi, Y. Zhou, Existence and Ulam stability for fractional differential equation of Hilfer-Hadamard type, Adv. Difference Equation, 2017 (2017), 180. Doi: 10.1186/s13662-017-1231-1. doi: 10.1186/s13662-017-1231-1
    [32] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, In: North Holland Mathematics Studies, 204. Elsevier Science. Publishers BV, Amsterdam, 2006.
    [33] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun Nonlinear Sci. Numer. Simul., 44 (2017), 460–481. doi: 10.1016/j.cnsns.2016.09.006
    [34] R. Almeida, A. B. malinowska, M. T. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Meth. Appl. Sci., 41 (2018), 336–532. doi: 10.1002/mma.4617
    [35] J. Vanterler da C. Sousa, E. Capelas de Oliveira, On the $\psi -$fractional integral and applications, Comput. Appl. Math., (2019). Doi.org/10.1007/s40314-019-0774-z.
    [36] D. O'Regan, R. Precup, Fixed point theorems for set-valued maps and existence principles for integral inclusions, J. math. Anal., 74 (2011), 2003–2011.
    [37] J. P. Aubin, A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory, Springer-Verlag, Berlin, 1984.
    [38] A. Pertuselşel, Multivalued weakly Picard operators and applications, Sci. Math. Japan, 95 (2004), 167–202.
    [39] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103–107.
    [40] I. A. Rus, Generalized Contractions and Applications, Cluj University Press, Gluuj-Napoca, 2001.
    [41] V. L. Lazăr, Fixed point theory for multi-valued $ \varphi -$contraction, Fixed Point Theory Appl., 50 (2011), 1–12.
    [42] C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Lect. Notes Math., 580, Springer Verlag, Berlin-New York, 1977.
    [43] J. R. Wang, Y. Zhou, Existence and controllability results for fractional semilinear differential inclusions, Nonlinear Anal. Real World Appl., 12 (2011), 3642–3653. doi: 10.1016/j.nonrwa.2011.06.021
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2369) PDF downloads(201) Cited by(8)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog