Research article

Sensitivity for topologically double ergodic dynamical systems

  • Received: 23 February 2021 Accepted: 15 July 2021 Published: 20 July 2021
  • MSC : 54H20, 37B45, 37C20, 37C50

  • As a stronger form of multi-sensitivity, the notion of ergodic multi-sensitivity (resp. strongly ergodically multi-sensitivity) is introduced. In particularly, it is proved that every topologically double ergodic continuous selfmap (resp. topologically double strongly ergodic selfmap) on a compact metric space is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive). And for any given integer $ m\geq 2 $, $ f $ is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) if and only if so is $ f^{m} $. Also, it is shown that if $ f $ is a continuous surjection, then $ f $ is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) if and only if so is $ \sigma_{f} $, where $ \sigma_{f} $ is the shift selfmap on the inverse limit space $ \lim\limits_{\leftarrow}(X, f) $. Moreover, it is proved that if $ f:X\rightarrow X $ (resp. $ g:Y\rightarrow Y $) is a map on a nontrivial metric space $ (X, d) $ (resp. $ (Y, d') $), and $ \pi $ is a semiopen factor map between $ (X, f) $ and $ (Y, g) $, then the ergodic multi-sensitivity (resp. the strongly ergodic multi-sensitivity) of $ g $ implies the same property of $ f $.

    Citation: Risong Li, Tianxiu Lu, Xiaofang Yang, Yongxi Jiang. Sensitivity for topologically double ergodic dynamical systems[J]. AIMS Mathematics, 2021, 6(10): 10495-10505. doi: 10.3934/math.2021609

    Related Papers:

  • As a stronger form of multi-sensitivity, the notion of ergodic multi-sensitivity (resp. strongly ergodically multi-sensitivity) is introduced. In particularly, it is proved that every topologically double ergodic continuous selfmap (resp. topologically double strongly ergodic selfmap) on a compact metric space is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive). And for any given integer $ m\geq 2 $, $ f $ is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) if and only if so is $ f^{m} $. Also, it is shown that if $ f $ is a continuous surjection, then $ f $ is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) if and only if so is $ \sigma_{f} $, where $ \sigma_{f} $ is the shift selfmap on the inverse limit space $ \lim\limits_{\leftarrow}(X, f) $. Moreover, it is proved that if $ f:X\rightarrow X $ (resp. $ g:Y\rightarrow Y $) is a map on a nontrivial metric space $ (X, d) $ (resp. $ (Y, d') $), and $ \pi $ is a semiopen factor map between $ (X, f) $ and $ (Y, g) $, then the ergodic multi-sensitivity (resp. the strongly ergodic multi-sensitivity) of $ g $ implies the same property of $ f $.



    加载中


    [1] J. Banks, J. Brooks, G. Cairns, G. Davis, P. Stacey, On Devaney's definition of chaos, Am. Math. Mon., 99 (1992), 332–334. doi: 10.1080/00029890.1992.11995856
    [2] E. Glasner, B. Weiss, Sensitive dependence on initial conditions, Nonlinearity, 6 (1993), 1067–1075. doi: 10.1088/0951-7715/6/6/014
    [3] C. Abraham, G. Biau, B. Cadre, Chaotic properties of mapping on a probbility space, J. Math. Anal. Appl., 266 (2002), 420–431. doi: 10.1006/jmaa.2001.7754
    [4] L. He, X. Yan, L. Wang, Weak-mixing implies sensitive dependence, J. Math. Anal. Appl., 299 (2004), 300–304. doi: 10.1016/j.jmaa.2004.06.066
    [5] R. Li, T. Lu, A. Waseem, Sensitivity and transitivity of systems satisfying the large deviations theorem in a sequence, Int. J. Bifurcation Chaos., 29 (2019), 1950125. doi: 10.1142/S0218127419501256
    [6] T. K. S. Moothathu, Stronger forms of sensitivity for dynamical systems, Nonlinearity, 20 (2007), 2115–2126. doi: 10.1088/0951-7715/20/9/006
    [7] W. Huang, J. Li, X. Ye, X. Zhou, Positive topological entropy and $\triangle$-weakly mixing sets, Adv. Math., 306 (2017), 653–683. doi: 10.1016/j.aim.2016.10.029
    [8] X. Wu, S. D. Liang, X. Ma, T. X. Lu, The mean sensitivity and mean equicontinuity in uniform spaces, Int. J. Bifurcation Chaos., 30 (2020), 2050122. doi: 10.1142/S0218127420501229
    [9] H. Liu, E. Shi, G. Liao, Sensitivity of set-valuted discrete systems, Nonlinear Anal.: Theory Methods Appl., 71 (2009), 6122–6125. doi: 10.1016/j.na.2009.06.003
    [10] S. A. Eisa, P. Stechlinski, Sensitivity analysis of nonsmooth power control systems with an example of wind turbines, Commun. Nonlinear Sci. Numer. Simul., 95 (2020), 105633.
    [11] G. Sakai, N. Matsunaga, K. Shimanoe, N. Yamazoe. Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor, Sensor. Actuat. B: Chem., 80 (2001), 125–131.
    [12] M. A. Midoun, X. Wang, M. Z. Talhaoui, A sensitive dynamic mutual encryption system based on a new 1D chaotic map, Opt. Lasers Eng., 139 (2020), 106485.
    [13] C. Caginalp, A dynamical systems approach to cryptocurrency stability, AIMS Math., 4 (2019), 1065–1077. doi: 10.3934/math.2019.4.1065
    [14] B. Chaboki, A. Shakiba, An image encryption algorithm with a novel chaotic coupled mapped lattice and chaotic image scrambling technique, J. Electr. Eng. Comput. Sci., 21 (2021), 1103–1124.
    [15] G. Beer, Topologies on closed and closed convex sets, Kluwer Academic Publishers, 1993.
    [16] E. Michael, Topologies on spaces of subsets, Trans. Am. Math. Soc., 71 (1951), 152–182. doi: 10.1090/S0002-9947-1951-0042109-4
    [17] J. Banks, Chaos for induced hyperspace maps, Chaos, Solitons Fractals, 25 (2005), 681–685. doi: 10.1016/j.chaos.2004.11.089
    [18] R. Gu, Kato's chaos in set valued discrete systems, Chaos, Solitons Fractals, 31 (2007), 765–771. doi: 10.1016/j.chaos.2005.10.041
    [19] Z. Yin, Y. Chen, Q. Xiang, Dynamics of operator-weighted shifts, Int. J. Bifurcation Chaos, 29 (2019), 1950110. doi: 10.1142/S0218127419501104
    [20] H. Wang, F. C. Lei, L. D. Wang, DC3 and Li-Yorke chaos, Appl. Math. Lett., 31 (2014), 29–33. doi: 10.1016/j.aml.2014.01.004
    [21] R. Hunter, B. E. Raines, Omega chaos and the specification property, J. Math. Anal. Appl., 448 (2017), 908–913. doi: 10.1016/j.jmaa.2016.11.037
    [22] D. Kwietniak, P. Oprocha, Topological entropy and chaos for maps induced on hyperspaces, Chaos, Solitons Fractals, 33 (2007), 76–86. doi: 10.1016/j.chaos.2005.12.033
    [23] Y. Wang, G. Wei, W. H. Campbell, Sensitive dependence on initial conditions between dynamical systems and their induced hyperspace dynamical systems, Topol. Appl., 156 (2009), 803–811. doi: 10.1016/j.topol.2008.10.014
    [24] R. Li, Y. Shi, Stronger forms of sensitivity for measure-preserving maps and semiflows on probability spaces, Abstr. Appl. Anal., (2014), 769523.
    [25] R. Yang, Topological ergodicity and topological double ergodicity, Acta Math. Sin., 46 (2003), 555–560.
    [26] R. S. Li, Topological ergodicity, transitivity and chaos of the set-valued maps, J. Nanjing Univ. Math. Biquarterly, 25 (2008), 114–121.
    [27] R. S. Li, A note on stronger forms of sensitivity for dynamical systems, Chaos, Solitons Fractals, 45 (2012), 753–758. doi: 10.1016/j.chaos.2012.02.003
    [28] P. Walter, An introduction to ergodic theory, New York: Spring-Verlag, 1982.
    [29] W. Bauer, K. Sigmund, Topological dynamics of transformations induced on the space of probability measures, Monatsh. Math., 79 (1975), 81–92. doi: 10.1007/BF01585664
    [30] V. Strassen, The existence of probability measures with given marginals, Ann. Math. Stat., 36 (1965), 423–439. doi: 10.1214/aoms/1177700153
    [31] K. R. Parthasarathy, Probability measures on metric spaces, AMS Chelsea Publishing, 1967.
    [32] R. Li, A note on shadowing with chain transitivity, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2815–2823. doi: 10.1016/j.cnsns.2011.11.015
    [33] X. Wu, R. Li, Y. Zhang, The multi-$\mathcal{F}$-sensitivity and $(\mathcal{F}_{1}, \mathcal{F}_{2})$-sensitivity for product systems, J. Nonlinear Sci. Appl., 9 (2016), 4364–4370. doi: 10.22436/jnsa.009.06.76
    [34] X. Wu, J. Wang, G. Chen, $\mathcal{F}$-sensitivity and multi-sensitivity of hyperspatial dynamical systems, J. Math. Anal. Appl., 429 (2015), 16–26. doi: 10.1016/j.jmaa.2015.04.009
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2121) PDF downloads(94) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog