Research article Special Issues

Nonlinear Fredholm integro-differential equation in two-dimensional and its numerical solutions

  • Received: 14 April 2021 Accepted: 08 July 2021 Published: 16 July 2021
  • MSC : 34A45, 65C40, 37N30

  • This paper proposes a new definition of the nonlinear Fredholm integro-differential equation of the second kind with continuous kernel in two-dimensional (NT-DFIDE). Furthermore, the work is concerned to study this new equation numerically. The existence of a unique solution of the equation is proved. In addition, the approximate solutions of NT-DFIDE are obtained by two powerful methods Adomian Decomposition Method (ADM) and Homotopy Analysis Method (HAM). The given numerical examples showed the efficiency and accuracy of the introduced methods.

    Citation: A. M. Al-Bugami. Nonlinear Fredholm integro-differential equation in two-dimensional and its numerical solutions[J]. AIMS Mathematics, 2021, 6(10): 10383-10394. doi: 10.3934/math.2021602

    Related Papers:

  • This paper proposes a new definition of the nonlinear Fredholm integro-differential equation of the second kind with continuous kernel in two-dimensional (NT-DFIDE). Furthermore, the work is concerned to study this new equation numerically. The existence of a unique solution of the equation is proved. In addition, the approximate solutions of NT-DFIDE are obtained by two powerful methods Adomian Decomposition Method (ADM) and Homotopy Analysis Method (HAM). The given numerical examples showed the efficiency and accuracy of the introduced methods.



    加载中


    [1] D. Zeidan, E. Romenski, A. Slaouti, E. F. Toro, Numerical study of wave propagation in compressible two-phase flow, Int. J. Numer. Methods Fluids, 54 (2007), 393-417. doi: 10.1002/fld.1404
    [2] F. Zarmehi, A. Tavakoli, A simple scheme to solve Saint-Venant equations by finite element method, Int. J. Comput. Methods, 13 (2016), 1650001. doi: 10.1142/S0219876216500018
    [3] H. Mandal, B. Bira, D. Zeidan, Power series solution of time-fractional Majda-Biello system using Lie group analysis, Proceedings International Conference on Fractional Differentiation and its Applications (ICFDA), 2018. Available from: https://ssrn.com/abstract=3284751.
    [4] M. Kazemi, H. M. Golshan, R. Ezzati, M. Sadatrasoul, New approach to solve two-dimensional Fredholm integral equations, J. Comput. Appl. Math., 354 (2019), 66-79. doi: 10.1016/j.cam.2018.12.029
    [5] F. Fattahzadeh, Approximate solution of two-dimensional Fredholm integral equation of the first kind using wavelet base method, Int. J. Appl. Comput. Math., 5 (2019), 138. doi: 10.1007/s40819-019-0717-9
    [6] S. M. Torabi, A. Tari, Numerical solution of two-dimensional IE of the first kind by multi-step method, Comput. Method Differ. Equations, 4 (2016), 128-138.
    [7] Z. P. Atabakan, A. K. Nasab, A. Kılıç man, On solution of Fredholm integro differential equations using composite Chebyshev finite difference method, Abstr. Appl. Anal., 2013 (2013), 694043.
    [8] M. Rabbani, B. Zarali, Solution of Fredholm integro-differential equations system by modified decomposition method, J. Math. Comput. Sci., 5 (2012), 258-264. doi: 10.22436/jmcs.05.04.02
    [9] O. A. Arqub, M. Al-Smadi, N. Shawagfeh, Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method, Appl. Math. Comput., 219 (2013), 8938-8948.
    [10] P. K. Pandey, Numerical solution of linear Fredholm integro-differential equations by non-standard finite difference method, Int. J. Math. Model Comput., 5 (2015), 259-266.
    [11] M. Erfanian, H. Zeidabadi, Solving of nonlinear Fredholm integro-differential equation in a complex plane with rationalized Haar wavelet bases, Asian-European J. Math., 12 (2019), 1950055. doi: 10.1142/S1793557119500554
    [12] A. Saadatmandi, M. Dehghanb, Numerical solution of the higher-order linear Fredholm integro-differential-difference equation with variable coefficients, Comput. Math. Appl. 59 (2010), 2996-3004.
    [13] S. H. Behiry, H. Hashish, I. L. El-Kalla, A new algorithm for the decomposition solution of nonlinear differential equations, Comput. Math. Appl., 54 (2007), 459-466.
    [14] I. L. El-Kalla, Error analysis of Adomian series solution to a class of nonlinear differential equations, Appl. Math. E-Notes, 7 (2007), 214-221.
    [15] I. L. El-Kalla, Convergence of the Adomian method applied to a class of nonlinear integral equations, Appl. Math. Lett., 21 (2008), 372-376.
    [16] G. M. Attia, I. L. El-Kalla, S. E. Madkour, Convergence of Adomian's method applied second kind nonlinear Fredholm integral equations, Int. J. Appl. Math., 18 (2005), 417-428.
    [17] I. L. El-Kalla, Convergence of Adomian's method applied to a class of Volterra type integro-differential equations, Int. J. Differ. Equations Appl., 10 (2011), 225-234.
    [18] P. Sargolzaei, M. Safinezhad, M. H. Rostami, Solution of Fredholm integral-differential equations systems by Adomian decomposition method, J. Modern Math. Stat., 2 (2008), 98-101.
    [19] M. A. Abdou, I. L. El-Kalla, A. M. Al-Bugami, New approach for convergence of the series solution to a class of Hammerstein integral equations, Int. J. Appl. Math. Comput., 3 (2011), 261-269.
    [20] D. Zeidan, C. K. Chau, T. T. Lu, W. Q. Zheng, Mathematical studies of the solution of Burgers' equations by Adomian decomposition method, Math. Methods Appl. Sci., 43 (2020), 2171-2188. doi: 10.1002/mma.5982
    [21] L. M. Delves, J. L. Mohamed, Computational methods for integral equations, Cambridge University Press, 1985.
    [22] K. E. Atkinson, The numerical solution of integral equation of the second kind, Cambridge University Press, 1997.
    [23] A. M. AL-Bugami, Two dimensional Fredholm integral equation with time, J. Mod. Methods Numer. Math., 3 (2012), 66-78.
    [24] M. A. Abdou, A. M. AL-Bugami, Nonlinear Fredholm-Volterra integral equation and its numerical solutions with quadrature methods, J. Adv. Math., 4 (2013), 415-422.
    [25] A. K. Khamis, M. A. H. Ismail, M. A. Abdou, A. M. Al-Bugami, Mixed integral equation with Cauchy kernel and contact problem, Life Sci. J., 10 (2013), 1208-1215.
    [26] A. M. Al-Bugami, M. M. Al-Wagdani, Runge-Kutta and Block by Block methods to solve linear two-dimensional Volterra integral equation with continuous kernel, J. Adv. Math., 11 (2016), 5705-5714.
    [27] A. M. Al-Bugami, M. M. Al-Wagdani, Some numerical methods for solving linear two-dimensional Volterra integral equation, J. Prog. Res. Math., 11 (2017), 1674-1684.
    [28] A. M. Al-Bugami, J. G. Al-Juaid, Some numerical techniques for solve nonlinear Fredholm-Volterra integral equation, J. Prog. Res. Math., 13 (2018), 2296-2310.
    [29] A. M. Al-Bugami, Some techniques for solving Fredholm-Volterra integral equation of the second kind, IJRRAS, 40 (2019), 40-51.
    [30] A. M. Al-Bugami, J. G. Al-Juaid, Runge-Kutta method and Bolck by Block method to solve nonlinear Fredholm-Volterra integral equation with continuous kernel, J. Appl. Math. Phys., 8 (2020), 2043-2054.
    [31] A. M. Al-Bugami, Singular Hammerstein-Volterra integral equation and its numerical processing, J. Appl. Math. Phys., 9 (2021), 379-390.
    [32] E. Kreyszig, Introduction to functional analysis with applications, University of Windsor, 1978.
    [33] K. E. Atkinson, A survey of numerical method for the solution of Fredholm integral equation of the second kind, Philadelphia: Society for Industrial and Applied Mathematics, 1976.
    [34] E. Az-Zo'bi, M. O. Al-Amr, A. Yildirim, W. A. AlZoubi, Revised reduced differential transform method using Adomianʼs polynomials with convergence analysis, Math. Eng., Sci. Aerosp. (MESA), 11 (2020), 827-840.
    [35] E. A. Az-Zo'bi, K. Al-Khaled, A. Darweesh, Numeric-analytic solutions for nonlinear oscillators via the modified multi-stage decomposition method, Mathematics, 7 (2019), 550.
    [36] S. F. Javan, S. Abbasbandy, M. A. F. Araghi, Application of reproducing kernel Hilbert space method for solving a class of nonlinear integral equations, Math. Prob. Eng., (2017), 7498136.
    [37] H. Du, G. L. Zhao, C. Y. Zhao, Reproducing kernel method for solving Fredholm integro-differential equations with weakly singularity, J. Comput. Appl. Math., 255 (2014), 122-132. doi: 10.1016/j.cam.2013.04.006
    [38] E. Babolian, S. Javadi, E. Moradi, Error analysis of reproducing kernel Hilbert space method for solving functional integral equations, J. Comput. Appl. Math., 300 (2016), 300-311. doi: 10.1016/j.cam.2016.01.008
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3301) PDF downloads(286) Cited by(6)

Article outline

Figures and Tables

Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog