Research article Special Issues

$ M- $truncated optical soliton and their characteristics to a nonlinear equation governing the certain instabilities of modulated wave trains

  • Received: 11 December 2020 Accepted: 20 May 2021 Published: 21 June 2021
  • MSC : 35A09, 35E05

  • This study investigates the nonlinear Hamiltonian amplitude equation by using two analytical techniques, namely; the extended sinh-Gordon equation expansion method, and the extended rational sine-cosine/sinh-cosh methods. Some important wave solutions are successfully constructed, such as dark, bright, combined dark-bright, singular solitons, periodic and singular periodic wave solutions. The physical features of the acquired solutions are plotted to depict the clear dynamical behaviour of the reported results. All the acquired solutions have satisfied the original equation.

    Citation: Abdullahi Yusuf, Tukur A. Sulaiman, Mustafa Inc, Sayed Abdel-Khalek, K. H. Mahmoud. $ M- $truncated optical soliton and their characteristics to a nonlinear equation governing the certain instabilities of modulated wave trains[J]. AIMS Mathematics, 2021, 6(9): 9207-9221. doi: 10.3934/math.2021535

    Related Papers:

  • This study investigates the nonlinear Hamiltonian amplitude equation by using two analytical techniques, namely; the extended sinh-Gordon equation expansion method, and the extended rational sine-cosine/sinh-cosh methods. Some important wave solutions are successfully constructed, such as dark, bright, combined dark-bright, singular solitons, periodic and singular periodic wave solutions. The physical features of the acquired solutions are plotted to depict the clear dynamical behaviour of the reported results. All the acquired solutions have satisfied the original equation.



    加载中


    [1] T. Dauxois, M. Peyrard, Physics of solitons, Cambridge: Cambridge University Press, 2006.
    [2] Y. Kivshar, G. Agrawal, Optical solitons: from fibers to photonic crystals, London: Academic Press, 2003.
    [3] F. M. Mitschke, L. F. Mollenaurer, Experimental observation of interaction forces between solitons in optical fibers, Opt. Lett., 12 (1987), 355–357. doi: 10.1364/OL.12.000355
    [4] A. Antikainen, M. Erkintalo, J. Dudley, G. Genty, On the phase-dependent manifestation of optical rogue waves, Nonlinearity, 25 (2012), R73. doi: 10.1088/0951-7715/25/7/R73
    [5] M. Islam, C. Soccolich, J. Gordon, Ultrafast digital soliton logic gates, Opt. Quant. Electron., 24 (1992), S1215–S1235. doi: 10.1007/BF00624671
    [6] J. D. Gibbon, A survey of the origins and physical importance of soliton equations, Philos. T. R. Soc. A, 315 (1985), 335–365.
    [7] A. Yusuf, Symmetry analysis, invariant subspace and conservation laws of the equation for fluid flow in porous media, Int. J. Geom. Methods M., 17 (2020), 2050173.
    [8] T. A. Sulaiman, A. Yusuf, F. Tchier, M. Inc, FMO Tawfiq and F Bousbahi. Lie-Bäcklund symmetries, analytical solutions and conservation laws to the more general (2+1)-dimensional Boussinesq equation, Results Phys., 22 (2021), 103850. doi: 10.1016/j.rinp.2021.103850
    [9] A. I. Aliyu, Y. Li, M. Inc, A. Yusuf, B. Almohsen, Dynamics of solitons to the coupled sine-Gordon equation in nonlinear optics, Int. J. Mod. Phys. B, 35 (2021), 2150043. doi: 10.1142/S0217979221500430
    [10] H. I. Abdel-Gawad, M. Tantawy, M. Inc, A. Yusuf, Construction of rogue waves and conservation laws of the complex coupled Kadomtsev–Petviashvili equation, Int. J. Mod. Phys. B, 34 (2020), 2050115. doi: 10.1142/S0217979220501155
    [11] S. Singh, R. Sakthivel, M. Inc, A. Yusuf, K. Murugesan, Computing wave solutions and conservation laws of conformable time-fractional Gardner and Benjamin–Ono equations, Pramana-J. Phys., 95 (2021), 43. doi: 10.1007/s12043-020-02070-0
    [12] M. Arshad, A. R. Seadawy, D. Lu, Modulation stability and dispersive optical soliton solutions of higher order nonlinear Schrödinger equation and its applications in mono-mode optical fibers, Superlattice. Microst., 113 (2018), 419–429. doi: 10.1016/j.spmi.2017.11.022
    [13] D. Lu, C. L. Liu, A sub-ODE method for generalized Gardner and BBM equation with nonlinear terms of any order, Appl. Math. Comput., 217 (2010), 1404–1407.
    [14] M. Arshad, A. R. Seadawy, D. Lu, Elliptic function and Solitary Wave Solutions of higherorder nonlinear Schrödinger dynamical equation with fourth-order dispersion and cubicquintic nonlinearity and its stability, Eur. Phys. J. Plus, 132 (2017), 371. doi: 10.1140/epjp/i2017-11655-9
    [15] D. J. Kaup, A. C. Newell, An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., 19 (1978), 798–801. doi: 10.1063/1.523737
    [16] M. Wadati, K. Sogo, Gauge transformations in soliton theory, J. Phys. Soc. Jpn., 52 (1983), 394–398. doi: 10.1143/JPSJ.52.394
    [17] S. Xu, J. He, L. Wang, The Darboux transformation of the derivative nonlinear Schrödinger equation, J. Phys. A: Math. Theor., 44 (2011), 305203. doi: 10.1088/1751-8113/44/30/305203
    [18] D. Lu, B. Hong, New exact solutions for the (2 + 1)-dimensional generalized Broer-Kaup system, Appl. Math. Comput., 199 (2008), 572–580.
    [19] W. Liu, Y. Zhang, J. He, Rogue wave on a periodic background for Kaup-Newell equation, Rom. Rep. Phys., 70 (2018), 106.
    [20] G. P. Agrawal, Nonlinear fiber optics, 5 Eds., New York, 2013.
    [21] W. Maliet, Solitary wave solutions of nonlinear wave equation, Am. J. Phys., 60 (1992), 650–654. doi: 10.1119/1.17120
    [22] M. J. Ablowitz, P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, New York: Cambridge University Press, 1991.
    [23] R. Hirota, Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192–1194. doi: 10.1103/PhysRevLett.27.1192
    [24] H. Rezazadeh, M. Inc, D. Baleanu, New Solitary Wave Solutions for Variants of (3+1)-Dimensional Wazwaz-Benjamin-Bona-Mahony Equations, Front. Phys., 8 (2020), 332. doi: 10.3389/fphy.2020.00332
    [25] M. Inc, H. Rezazadeh, J. Vahidi, M. Eslami, M. A. Akinlar, M. N. Ali, et al., New solitary wave solutions for the conformable Klein-Gordon equation with quantic nonlinearity, AIMS Mathematics, 5 (2020), 6972–6984. doi: 10.3934/math.2020447
    [26] S. Zhang, T. Xia, A generalized F-expansion method with symbolic computation exactly solving Broer-Kaup equations, Appl. Math. Comput., 189 (2007), 836–843.
    [27] Q. Zhao, L. H. Wu, Darboux transformation and explicit solutions to the generalized TD equation, Appl. Math. Lett., 67 (2017), 1–6. doi: 10.1016/j.aml.2016.11.012
    [28] D. B. Belobo, T. Dase, Solitary and Jacobi elliptic wave solutions of the generalized Benjamin-Bona-Mahony equation, Commun. Nonlinear Sci., 48 (2017), 270–277. doi: 10.1016/j.cnsns.2017.01.001
    [29] M. Arshad, D. Lu, M. Ur Rehman, I. Ahmed, A. M. Sultan, Optical solitary wave and elliptic function solutions of Fokas-Lenells equation in presence of perturbation terms and its modulation instability, Phys. Scripta, 94 (2019), 105202. doi: 10.1088/1402-4896/ab1791
    [30] W. P. Zhong, R. H. Xie, M. Belic, N. Petrovic, G. Chen, L. Yi, Exact spatial soliton solutions of the two-dimensional generalized nonlinear Schrödinger equation with distributed coefficients, Phys. Rev. A, 78 (2008), 023821. doi: 10.1103/PhysRevA.78.023821
    [31] W. P. Zhong, M. R. Belic, Y. Lu, T. Huang, Traveling and solitary wave solutions to the one-dimensional Gross-Pitaevskii equation, Phys. Rev. E, 81 (2010), 016605. doi: 10.1103/PhysRevE.81.016605
    [32] W. Zhong, W. P. Zhong, M. R. Belic, G. Cai, Embedded solitons in the (2 + 1)-dimensional sine-Gordon equation, Nonlinear Dynam., 100 (2020), 1519–1526. doi: 10.1007/s11071-020-05561-2
    [33] J. Manaan, M. F. Aghdaei, M. Khalilian, R. S. Jeddi, Application of the generalized G-expansion method for nonlinear PDEs to obtaining soliton wave solution, Optik, 135 (2017), 395–406. doi: 10.1016/j.ijleo.2017.01.078
    [34] M. Arshad, D. Lu, J. Wang, (N +1)-dimensional fractional reduced differential transform method for fractional order partial differential equations, Commun. Nonlinear Sci., 48 (2017), 509–519. doi: 10.1016/j.cnsns.2017.01.018
    [35] S. A. Khuri, A. Sayfy, Generalizing the variational iteration method for BVPs: proper setting of the correction functional, Appl. Math. Lett., 68 (2017), 68–75. doi: 10.1016/j.aml.2016.11.018
    [36] N. Savaissou, G. Betchewe, H. Rezazadeh, A. Bekir, S. Y. Doka, Exact optical solitons to the perturbed nonlinear Schrödinger equation with dual-power law of nonlinearity, Opt. Quant. Electron., 52 (2020), 1–16. doi: 10.1007/s11082-019-2116-1
    [37] N. Nasreen, D. Lu, M. Arshad, Optical solitons of nonlinear Schrödinger equation with second order spatiotemporal dispersion and its modulation instability, Optik, 161 (2018), 221–229. doi: 10.1016/j.ijleo.2018.02.043
    [38] Z. Pinar, H. Rezazadeh, M. Eslami, Generalized logistic equation method for Kerr law and dual power law Schrödinger equations, Opt. Quant. Electron., 52 (2020), 1–16. doi: 10.1007/s11082-019-2116-1
    [39] J. Y. Yang, W. X. Ma, Conservation laws of a perturbed Kaup-Newell equation, Mod. Phys. Lett. B, 30 (2016), 1650381. doi: 10.1142/S0217984916503814
    [40] M. A. Akbar, L. Akinyemi, S. W. Shao, A. Jhangeer, H. Rezazadeh, M. M. A. Khater, et al., Soliton solutions to the Boussinesq equation through sine-Gordon method and Kudryashov method, Results Phys., 25 (2021), 104228. doi: 10.1016/j.rinp.2021.104228
    [41] L. Akinyemi, M. Şenol, H. Rezazadeh, H. Ahmad, H. Wang, Abundant optical soliton solutions for an integrable (2+1)-dimensional nonlinear conformable Schrodinger system, Results Phys., 25 (2021), 104177. doi: 10.1016/j.rinp.2021.104177
    [42] J. C. He, Z. Y. Cong, Comment on revision of Kaup-Newell's works on IST for DNLS equation, Commun. Theor. Phys., 50 (2008), 1369–1374. doi: 10.1088/0253-6102/50/6/26
    [43] M. O. Al-Amr, New applications of reduced differential transform method, Alex. Eng. J., 53 (2014), 243–247. doi: 10.1016/j.aej.2014.06.005
    [44] S. Kumar, K. Singh, R. K. Gupta, Coupled Higgs field equation and Hamiltonian amplitude equation: Lie classical approach and $(G'/G)$-expansion method, Pramana-J. Phys., 79 (2012), 41–60. doi: 10.1007/s12043-012-0284-7
    [45] C. Y. Yang, W. Y. Li, W. T. Yu, M. L. Liu, Y. J. Zhang, G. L. Ma, et al., Amplification, reshaping, fission and annihilation of optical solitons in dispersion decreasing fiber, Nonlinear Dynam., 92 (2018), 203–213. doi: 10.1007/s11071-018-4049-9
    [46] M. Wadati, H, Segur, M. J. Ablowitz, A new Hamiltonian amplitude equation governing modulated wave instabilities, J. Phys. Soc. Jpn., 61 (1992), 1187. doi: 10.1143/JPSJ.61.1187
    [47] X. L. Yang, J. S. Tang, Travelling wave solutions for Konopelchenko-Dubrovsky equation using an extended sinh-Gordon equation expansion method, Commun. Theor. Phys., 50 (2008), 1047. doi: 10.1088/0253-6102/50/5/06
    [48] N. Mahaka, G. Akram, Extension of rational sine-cosine and rational sinh-cosh techniques to extract solutions for the perturbed NLSE with Kerr law nonlinearity, Eur. Phys. J. Plus, 134 (2019), 159. doi: 10.1140/epjp/i2019-12545-x
    [49] A. C. Scott, Encyclopedia of nonlinear science, Routledge, Taylor and Francis Group, New York, 2005.
    [50] P. Rosenau, What is a Compacton?, Notices of the AMS, 52 (2005), 738–739.
    [51] E. W. Weisstein, Concise Encyclopedia of Mathematics, New York: CRC Press, 2002.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2381) PDF downloads(101) Cited by(5)

Article outline

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog