Ground state solution for a class of magnetic equation with general convolution nonlinearity

  • Received: 26 April 2021 Accepted: 11 June 2021 Published: 17 June 2021
  • MSC : 35A15, 35J35, 35J60, 35R11

  • In this paper, we consider the following magnetic Laplace nonlinear Choquard equation

    $ \begin{equation*} -\Delta_A u+V(x)u = (I_{\alpha}*F(|u|))\frac{f(|u|)}{|u|}u, \, \, \text{in}\, \, \mathbb{R}^N, \ \end{equation*} $

    where $ u: \mathbb{R}^N\rightarrow C $, $ A: \mathbb{R}^N\rightarrow \mathbb{R}^N $ is a vector potential, $ N\geq 3 $, $ \alpha\, \in\, (N-2, N) $, $ V:\, \mathbb{R}^N \rightarrow \mathbb{R} $ is a scalar potential function and $ I_{\alpha} $ is a Riesz potential of order $ \alpha\, \in\, (N-2, N) $. Under certain assumptions on $ A(x) $, $ V(x) $ and $ f(t) $, we prove that the equation has at least a ground state solution by variational methods.

    Citation: Li Zhou, Chuanxi Zhu. Ground state solution for a class of magnetic equation with general convolution nonlinearity[J]. AIMS Mathematics, 2021, 6(8): 9100-9108. doi: 10.3934/math.2021528

    Related Papers:

  • In this paper, we consider the following magnetic Laplace nonlinear Choquard equation

    $ \begin{equation*} -\Delta_A u+V(x)u = (I_{\alpha}*F(|u|))\frac{f(|u|)}{|u|}u, \, \, \text{in}\, \, \mathbb{R}^N, \ \end{equation*} $

    where $ u: \mathbb{R}^N\rightarrow C $, $ A: \mathbb{R}^N\rightarrow \mathbb{R}^N $ is a vector potential, $ N\geq 3 $, $ \alpha\, \in\, (N-2, N) $, $ V:\, \mathbb{R}^N \rightarrow \mathbb{R} $ is a scalar potential function and $ I_{\alpha} $ is a Riesz potential of order $ \alpha\, \in\, (N-2, N) $. Under certain assumptions on $ A(x) $, $ V(x) $ and $ f(t) $, we prove that the equation has at least a ground state solution by variational methods.



    加载中


    [1] V. Moroz, J. Van Schaftingen, Ground states of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153–184. doi: 10.1016/j.jfa.2013.04.007
    [2] V. Moroz, J. Van Schaftingen, Existence of ground states for a class of nonlinear Choquard equations, T. Am. Math. Soc., 367 (2015), 6557–6579.
    [3] V. Moroz, J. Van Schaftingen, Nonexistence and optimal decay of supersolutions to Choquard equations in exterior domains, J. Differ. Equations, 254 (2013), 3089–3145. doi: 10.1016/j.jde.2012.12.019
    [4] V. Moroz, J. Van Schaftingen, Ground states of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., 17 (2015), 1550005. doi: 10.1142/S0219199715500054
    [5] V. Moroz, J. Van Schaftingen, A guide to the Choquard equation, J. Fixed Point Theory Appl., 19 (2017), 773–813. doi: 10.1007/s11784-016-0373-1
    [6] E. H. Lieb, M. Loss, Analysis, Math. Gazette, 83 (1999), 565–566.
    [7] M. Ghimenti, J. Van Schaftingen, Nodal solutions for the Choquard equation, J. Funct. Anal., 271 (2016), 107–135. doi: 10.1016/j.jfa.2016.04.019
    [8] L. Ma, L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch Rational Mech. Aral., 195 (2010), 455–467. doi: 10.1007/s00205-008-0208-3
    [9] D. F. Lü, A note on Kirchhoff-type equations with Hartree-type nonlinearities, Nonlinear Anal.-Theor., 99 (2014), 35–48. doi: 10.1016/j.na.2013.12.022
    [10] M. J. Esteban, P. L. Lions, Stationary solutions of a nonlinear Schrödinger equations with an external magnetic field, In: Partial differential equations and the calculus of variations, Boston: Birkhäuser, 1989,401–409.
    [11] G. Arioli, A. Szulkin, A semilinear Schrödinger equation in the presence of a magnetic field, Arch. Ration. Mech. Anal., 170 (2003), 277–293. doi: 10.1007/s00205-003-0274-5
    [12] C. O. Alves, G. M. Figueiredo, M. F. Furtado, Multiple solutions for a nonlinear Schrödinger equation with magnetic fields, Commun. Part. Diff. Eq., 36 (2011), 1565–1586. doi: 10.1080/03605302.2011.593013
    [13] M. Clapp, A. Szulkin, Multiple solutions to a nonlinear Schrödinger equation with Aharonov-Bohm magnetic potential, Nonlinear Differ. Equ. Appl., 17 (2010), 229–248. doi: 10.1007/s00030-009-0051-8
    [14] C. O. Alves, G. M. Figueiredo, Multiple solutions for a semilinear elliptic equation with critical growth and magnetic field, Milan J. Math., 82 (2014), 389–405. doi: 10.1007/s00032-014-0225-7
    [15] C. Ji, V. D. Rädulescu, Multi-bump solutions for the nonlinear magnetic Schrödinger equation with exponential critical growth in $ \mathbb{R}^2$, Manuscripta Math., 164 (2021), 509–542. doi: 10.1007/s00229-020-01195-1
    [16] C. Ji, V. D. Rädulescu, Multiplicity and concentration of solutions to the nonlinear magnetic Schrödinger equation, Calc. Var., 59 (2020), 115. doi: 10.1007/s00526-020-01772-y
    [17] H. M. Nguyen, A. Pinamonti, M. Squassina, E. Vecchi, New characterizations of magnetic Soblev spaces, Adv. Nonlinear Anal., 7 (2018), 227–245. doi: 10.1515/anona-2017-0239
    [18] A. Xia, Multiplicity and concentration results for magnetic relativistic Schrödinger equations, Adv. Nonlinear Anal., 9 (2020), 1161–1186.
    [19] S. Cingolani, M. Clapp, S. Secchi, Multiple solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys., 63 (2012), 233–248. doi: 10.1007/s00033-011-0166-8
    [20] S. Cingolani, M. Clapp, S. Secchi, Intertwining semiclassical solutions to a Schrödinger-Newton system, DCDS-S, 6 (2013), 891–908.
    [21] S. Cingolani, S. Secchi, M. Squassina, Semi-classical limit for Schrödinger equations solutions with magnetic field and Hartree-type nonlinearities, P. Roy. Soc. Edinb. A, 140A (2010), 973–1009.
    [22] M. B. Yang, Y. H. Wei, Existence and multiplicity of solutions for nonlinear Schrödinger equations solutions with magnetic field and Hartree type nonlinearities, J. Math. Anal. Appl., 403 (2013), 680–694. doi: 10.1016/j.jmaa.2013.02.062
    [23] H. Bueno, G. G. Mamani, G. A. Pereira, Ground state of a magnetic nonlinear Choquard equation, Nonlinear Anal., 181 (2019), 189–199. doi: 10.1016/j.na.2018.11.012
    [24] M. Willem, Minimax theorems, In: Progress in nonlinear differential equations and their applications, Boston: Birkhäuser, 1996.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2028) PDF downloads(68) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog