Research article

Dynamics and stability for Katugampola random fractional differential equations

  • Received: 15 January 2021 Accepted: 27 May 2021 Published: 07 June 2021
  • MSC : 26A33, 34A37, 34G20

  • This paper deals with some existence of random solutions and the Ulam stability for a class of Katugampola random fractional differential equations in Banach spaces. A random fixed point theorem is used for the existence of random solutions, and we prove that our problem is generalized Ulam-Hyers-Rassias stable. An illustrative example is presented in the last section.

    Citation: Fouzia Bekada, Saïd Abbas, Mouffak Benchohra, Juan J. Nieto. Dynamics and stability for Katugampola random fractional differential equations[J]. AIMS Mathematics, 2021, 6(8): 8654-8666. doi: 10.3934/math.2021503

    Related Papers:

  • This paper deals with some existence of random solutions and the Ulam stability for a class of Katugampola random fractional differential equations in Banach spaces. A random fixed point theorem is used for the existence of random solutions, and we prove that our problem is generalized Ulam-Hyers-Rassias stable. An illustrative example is presented in the last section.



    加载中


    [1] S. Abbas, M. Benchohra, M. A. Darwish, New stability results for partial fractional differential inclusions with not instantaneous impulses, Fract. Calc. Appl. Anal., 18 (2015), 172-191.
    [2] S. Abbas, M. Benchohra, J. R. Graef, J. Henderson, Implicit fractional differential and integral equations: Existence and stability, Walter de Gruyter GmbH & Co KG, 2018.
    [3] S. Abbas, M. Benchohra, N. Hamidi, J. Henderson, Caputo-Hadamard fractional differential equations in Banach spaces, Frac. Calc. Appl. Anal., 21 (2018), 1027-1045. doi: 10.1515/fca-2018-0056
    [4] S. Abbas, M. Benchohra, G. M. N'Guérékata, Topics in fractional differential equations, Springer Science & Business Media, 2012.
    [5] S. Abbas, M. Benchohra, G. M. N'Guérékata, Advanced fractional differential and integral equations, Nova Publishers, 2015.
    [6] S. Abbas, M. Benchohra, A. Petrusel, Ulam stabilities for partial fractional differential inclusions via Picard operators theory, Electron. J. Qual. Theo., 2014 (2014), 1-13.
    [7] S. Abbas, M. Benchohra, A. Petrusel, Ulam stability for Hilfer type fractional differential inclusions via the weakly Picard operators theory, Fract. Calc. Appl. Anal., 20 (2017), 384-398. doi: 10.1515/fca-2017-0020
    [8] S. Abbas, M. Benchohra, S. Sivasundaram, Ulam stability for partial fractional differential inclusions with multiple delay and impulses via Picard operators, Nonlinear Stud., 20 (2013), 623-641.
    [9] R. P. Agarwal, D. Baleanu, J. J. Nieto, D. F. M. Torres, Y. Zhou, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comput. Appl. Math., 339 (2018), 3-29. doi: 10.1016/j.cam.2017.09.039
    [10] R. P. Agarwal, S. Hristova, D. O'Regan, K. Stefanova, Iterative algorithm for solving scalar fractional differential equations with Riemann-Liouville derivative and supremum, Algorithms, 13 (2020), 1-21.
    [11] R. Almeida, R. Kamocki, A. B. Malinowska, T. Odzijewicz, On the necessary optimality conditions for the fractional Cucker-Smale optimal control problem, Commun. Nonlinear Sci., 96 (2021), 105678. doi: 10.1016/j.cnsns.2020.105678
    [12] R. Almeida, R. Kamocki, A. B. Malinowska, T. Odzijewicz, Optimal leader-following consensus of fractional opinion formation models, J. Comput. Appl. Math., 381 (2021), 1-16.
    [13] F. Bekada, S. Abbas, M. Benchohra, Boundary value problem for Caputo-Fabrizio random fractional differential equations, Moroccan J. Pure Appl. Anal. (MJPAA), 6 (2020), 218-230. doi: 10.2478/mjpaa-2020-0017
    [14] M. Benchohra, S. Bouriah, J. J. Nieto, Terminal value problem for differential equations with Hilfer-Katugampola fractional derivative, Symmetry, 11 (2019), 1-14.
    [15] R. M. Evans, U. N. Katugampola, D. D. Edwards, Applications of fractional calculus in solving Abel-type integral equations: Surfacee volume reaction problem, Comput. Math. Appl., 73 (2017), 1346-1362. doi: 10.1016/j.camwa.2016.12.005
    [16] S. Hristova, A. Dobreva, Existence, continuous dependence and finite time stability for Riemann-Liouville fractional differential equations with a constant delay, AIMS Mathematics, 5 (2020), 3809-3824. doi: 10.3934/math.2020247
    [17] D. H. Hyers, G. Isac, Th. M. Rassias, Stability of functional equations in several variables, Birkhuser, Basel, 1998.
    [18] S. Itoh, Random fixed point theorems with applications to random differential equations in Banach spaces, J. Math. Anal. Appl, 67 (1979), 261-273. doi: 10.1016/0022-247X(79)90023-4
    [19] S. M. Jung, Hyers-Ulam-Rassias stability of functional equations in mathematical analysis, Hadronic Press, 2001.
    [20] S. M. Jung, Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer Science & Business Media, 2011.
    [21] U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1-15.
    [22] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860-865.
    [23] D. H. Hyers, On the stability of the linear functional equation, P. Natl. Acad. Sci. USA, 27 (1941), 222-224. doi: 10.1073/pnas.27.4.222
    [24] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [25] I. A. Rus, Ulam stability of ordinary differential equations, Studia Univ. Babes- Bolyai, Math., LIV (2009), 125-133.
    [26] I. A. Rus, Ulam stability of operatorial equations, Fixed Point Theor., 10 (2009), 305-320.
    [27] T. M. Rassias, On the stability of linear mappings in Banach spaces, P. Am. Math. Soc, 72 (1978), 297-300. doi: 10.1090/S0002-9939-1978-0507327-1
    [28] V. E. Tarasov, Fractional dynamics: Application of fractional calculus to dynamics of particles, fields and media, Springer Science & Business Media, 2010.
    [29] J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theo., 2011 (2011), 1-10.
    [30] J. Wang, L. Lv, Y. Zhou, New concepts and results in stability of fractional differential equations, Commun. Nonlinear Sci., 17 (2012), 2530-2538. doi: 10.1016/j.cnsns.2011.09.030
    [31] W. Wei, X. Li, X. Li, New stability results for fractional integral equation, Comput. Math. Appl., 64 (2012), 3468-3476. doi: 10.1016/j.camwa.2012.02.057
    [32] M. Yang, Q. Wang, Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions, Fract. Calc. Appl. Anal., 20 (2017), 679-705.
    [33] S. Zeng, D. Baleanu, Y. Bai, G. Wu, Fractional differential equations of Caputoo-Katugampola type and numerical solutions, Appl. Math. Comput., 315 (2017), 549-554.
    [34] Y. Zhou, Basic theory of fractional differential equations, World Scientific, Singapore, 2014.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2492) PDF downloads(193) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog