Research article

On second-order differential subordination for certain meromorphically multivalent functions

  • Received: 18 April 2020 Accepted: 22 May 2020 Published: 09 June 2020
  • MSC : Primary 30C45; Secondary 30C80

  • A new class $\mathcal{R}_n(A, B, \lambda)$ of meromorphically multivalent functions defined by the second-order differential subordination is introduced. Several geometric properties of this new class are studied. The sharp upper bound on $|z| = r < 1$ for the functional $\mathrm{Re}\{(\lambda-1)z^{p+1}f'(z)+\frac{\lambda}{p+1}z^{p+2}f''(z)\}$ over the class $\mathcal{R}_n(A, B, 0)$ is obtained.

    Citation: Cai-Mei Yan, Jin-Lin Liu. On second-order differential subordination for certain meromorphically multivalent functions[J]. AIMS Mathematics, 2020, 5(5): 4995-5003. doi: 10.3934/math.2020320

    Related Papers:

  • A new class $\mathcal{R}_n(A, B, \lambda)$ of meromorphically multivalent functions defined by the second-order differential subordination is introduced. Several geometric properties of this new class are studied. The sharp upper bound on $|z| = r < 1$ for the functional $\mathrm{Re}\{(\lambda-1)z^{p+1}f'(z)+\frac{\lambda}{p+1}z^{p+2}f''(z)\}$ over the class $\mathcal{R}_n(A, B, 0)$ is obtained.


    加载中


    [1] M. K. Aouf, J. Dziok, J. Sokól, On a subclass of strongly starlike functions, Appl. Math. Lett., 24 (2011), 27-32. doi: 10.1016/j.aml.2010.08.004
    [2] Y. R. Chen, R. Srivastava, J. L. Liu, A linear operator associated with a certain variation of the Bessel function Jν(z) and related conformal mappings, J. Pseudo-Differ. Oper. Appl., (2019), 1-14.
    [3] N. E. Cho, H. J. Lee, J. H. Park, et al. Some applications of the first-order differential subordinations, Filomat, 30 (2016), 1456-1474.
    [4] S. Devi, H. M. Srivastava, A. Swaminathan, Inclusion properties of a class of functions involving the Dziok-Srivastava operator, Korean J. Math., 24 (2016), 139-168. doi: 10.11568/kjm.2016.24.2.139
    [5] J. Dziok, Classes of meromorphic functions associated with conic regions, Acta Math. Sci., 32 (2012), 765-774. doi: 10.1016/S0252-9602(12)60056-3
    [6] Y. C. Kim, Mapping properties of differential inequalities related to univalent functions, Appl. Math. Comput., 187 (2007), 272-279.
    [7] J. L. Liu, Applications of differential subordinations for generalized Bessel functions, Houston J. Math., 45 (2019), 71-85.
    [8] J. L. Liu, R. Srivastava, Hadamard products of certain classes of p-valent starlike functions, Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat., 113 (2019), 2001-2015.
    [9] S. Mahmood, J. Sokól, New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator, Results Math., 71 (2017), 1345-1357. doi: 10.1007/s00025-016-0592-1
    [10] S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157-171.
    [11] M. Nunokawa, H. M. Srivastava, N. Tuneski, Some Marx-Strohhäcker type results for a class of multivalent functions, Miskolc Math. Notes, 18 (2017), 353-364. doi: 10.18514/MMN.2017.1952
    [12] H. M. Srivastava, M. K. Aouf, A. O. Mostafa, et al. Certain subordination-preserving family of integral operators associated with p-valent functions, Appl. Math. Inform. Sci., 11 (2017), 951- 960.
    [13] H. M. Srivastava, R. M. El-Ashwah, N. Breaz, A certain subclass of multivalent functions involving higher-order derivatives, Filomat, 30 (2016), 113-124. doi: 10.2298/FIL1601113S
    [14] H. M. Srivastava, B. Khan, N. Khan, et al. Coefficient inequalities for q-starlike functions associated with the Janowski functions, Hokkaido Math. J., 48 (2019), 407-425. doi: 10.14492/hokmj/1562810517
    [15] Y. Sun, Y. P. Jiang, A. Rasila, et al. Integral representations and coefficient estimates for a subclass of meromorphic starlike functions, Complex Anal. Oper. Theory, 11 (2017), 1-19. doi: 10.1007/s11785-016-0531-x
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3039) PDF downloads(217) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog