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1. Introduction
Throughout our present investigation, we assume that
n,peN, -1<B<1, B<A andA1<0. (1.1)
Let Z,(p) denote the class of functions of the form

f@=z"+ Z a P (1.2)
k=n

which are analytic in the punctured open unit disk U* = {z : 0 < |z| < 1} with a pole at z = 0. The class
2,(p) 1s closed under the Hadamard product (or convolution)

(i D@ =27+ Y aand™” = (f+ M),
k=n


http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2020320

4996

where

[ ="+ ) agd T eT(p) (j=12).
k=n

For functions f(z) and g(z) analytic in U = {z : |z| < 1}, we say that f(z) is subordinate to g(z) and
write f(z2) < g(2) (z € U), if there exists an analytic function w(z) in U such that

w2 <zl and f(z) = gw(z)) (z€U).

Furthermore, if the function g(z) is univalent in U, then

f(@)<g@) (el) e f(0)=¢g0) and f(U)Cg).

In this paper we introduce and investigate the following subclass of Z,(p).
Definition. A function f(z) € X,(p) is said to be in the class R, (A, B, 1) if it satisfies the second-order
differential subordination:

1+ Az
1+ Bz

A= 1D @)+ —— 227 (2) < p (z e D). (1.3)
p+1
Recently, several authors (see, e.g., [1-9, 11-15] and the references cited therein) introduced and
investigated various subclasses of meromorphically multivalent functions. Some properties such as
distortion bounds, inclusion relations and coefficient estimates were given. In this note we obtain
inclusion relation and coefficient estimate for functions f(z) in the class R,(A, B, A). Furthermore, we
investigate a new problem. It is to find

max Re {(/l - D" () + Lz’”zf"(z)} ,
p+1

|zlI=r<1

where f(z) varies in the class:

I1+A
Rq(A, B,0) = {f(Z) €, (p): —2"f1(2) < Py :Bi}' (1.4)

We need the following lemma in order to derive our main results for the class R, (A, B, A).
Lemma [10]. Let g(z) be analytic in U and A(z) be analytic and convex univalent in U with 4(0) = g(0).
If

1
g(2) + /—lzg’(z) < h(2),

where Reu > 0 and p # 0, then g(z) < h(z).
2. Geometric properties of functions in class R,(A, B, 1)

Theorem 1. Let 1, < A; < 0. Then
Rn(A, B, /12) - Rn(A, B, /ll)
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Proof. Suppose that

8@ =-""'f'(2) 2.1)
for f(z) € R.(A, B, A;). Then g(z) is analytic in U with g(0) = p. By using (1.3) and (2.1), we have
Ay
(= D@+ =57 @) = 8() - —26'(2)
1+ Az

. 2.2

= pl + Bz (2:2)
Hence an application of Lemma with y = p 150 yields
1+ Az

< . 2.3

8(2) P17 B: (2.3)

Note that 0 < ’“ < 1 and that the function {¥42 is convex univalent in U, then it follows from (2.1),
(2.2) and (2.3) that

(4 = D (@) + pLz””f”(z)

+1

/11 /1 /11
/l -1 p+1 4+ = p+1 1/ -t
N (( )27 f(2) PR 17z )) ( Az)g(Z)
1+ Az
pl + Bz
Thus f(z) € R.(A, B, 4;). The proof of Theorem 1 is completed. O

Theorem 2. Let -
fQ)=z77"+ Z a7 € R,(A, B, ). (2.4)

The result is sharp for each k > n (k # p).

Proof. It is known that, if

(o)

$@)= ) e <Y (zel),

=1
where ¢(z) is analytic in U and (z) = z + --- is analytic and convex univalent in U, then |c;| < 1
(j € N).
By (2.4) we have
A= D2 f' @) + 772 f() - p i (k=pk=p=1
P(A—B) i p(p+1)A-B)
z
. 2.
178 (zeU) (2.0)
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Because the function —- is analytic and convex univalent in U, it follows from (2.6) that

1+Bz
lk — pl(p +1 - k)
p(p+1)(A-B)

larl <1 (k>=nandk # p),

which gives (2.5).
Next we consider the function f;(z) defined by

~ s (_B)m—lzkm—p
— P4 +1)YA-B €U; k>n, k .
fi) =27+ p(p + 1) >;(km_p)(ﬂkm_p_l) z n, k # p)
Since .
, ., 1 +Az 1 +Az
(A= D" fl(2) + o U R@ = 5 <PirE. @D
n (p+1)A-B)
- pp+ ~ k-
) =77+ z P+
‘ (k= p)k —p—1)
for each k > n (k # p), the proof of Theorem 2 is completed. O

Theorem 3. Let f(z) € R,(A, B, A), g(z) € Z,(p) and

Re(z"g(z)) > % (z € U). (2.7)
Then (f = 2)(z) € R.(A, B, Q).

Proof. For f(z) € R.(A, B, 1) and g(z) € Z,(p), we have

A
A= D (fxg) @)+ —2"*(f+8)(2)
p+1

(@) * (8D
= 1) * (g(2). 28)

A
= (- D(Zf@)* @)+ >

where
PR < p

h(z) = (A= D" f/(z) + P A I +Az (z€ ). (2.9

+1 1+ Bz
From (2.7), we can see that the function z”g(z) has Herglotz representation:

ez) = f| P o ew), (2.10)

x|=1 1 —xz

where pu(x) is a probability measure on the unit circle |x| = 1 and 1 du(x) = 1.

1+Az

5 is convex univalent in U, it follows from (2.8)—(2.10) that

Because the function

Pl
A= D"N(f=g)(2) + (fx 8" (2)
p+1

1+ Az
= h(x2)du(x) <
j|:c|:1 (xz)dp(x) P1+BZ

This shows that (f * g)(z) € R,(A, B, 1). The proof of Theorem 3 is completed. O

(z € 0).

AIMS Mathematics Volume 5, Issue 5, 4995-5003.



4999

Theorem 4. Let f(z) € R,(A, B,0). Then for |z| = r < 1,
(1) if M,(A, B, A,r) > 0, we have

Re {(/l — D f(2) + Lz””f”(z)}
p+1
Pl 1+ @+ DA+ B) — n(A - B)r" +(p+ 1)ABr"]

; 2.11
(p + (1 + Brv)? ( )
(1) if M,(A, B, A, r) <0, we have
A p(4/lzKAKB — Lz)
R 1-1 p+l g1 + p+2 o1 < n , 2.12
e{( LA L (Z)} = 4a(p + DA - By (1 - K5 (212)
where
Ky =1-A>"+nAr~'(1 - r?),
Kg=1-B*r"+ nBr"‘l(l — r2),
2 -1 2 -1 2 (2.13)
L,=241-ABr")+ An(A+ Byr'"' (1 = r )—(p+ D)(A=B)r"'(1 —r),
M,(A,B,A,r) =24Kp(1 + Ar*) — L,(1 + Br").
The results are sharp.
Proof. Equality in (2.11) occurs for z = 0. Thus we assume that 0 < |z| = r < 1.
For f(z) € R.(A, B,0), we can write
p+1 £r 1+ A"
@ _1+AZYE gy (2.14)
p 1+ Bz"¢(z)
where ¢(z) is analytic and |¢(z)| < 1 in U. It follows from (2.14) that
A
(A= f'(2) + 2 f"(2)
p+1
_ gy - APA - B + Z¢'(2))
(p + D1 + Bz"¢(2))*
pi p+1 7 p+1 g7 Ap(A — B n+l s
— () np (Z f@ 1)(A+Bz f(z))_ p(A - B)z sn(z)z‘ (2.15)
(p+ 1)(A-B) p p (p + D1 + Bz"¢(2))
Using the Carathéodory inequality:
’ I- |SD(Z)|2
< —_—
@l < ——5—.
we have
n+l, 7 n+1 _ 2
Re{ ') }s r" (1 = le2)°)
(1+ Bz"¢(2))* ] — (1 = )|l + Bz"p(2))*
r2n|A + Ezp+1f/(z)|2 _ |lzp+1f/(z) + 1|2
z d (2.16)

<
(A= B?2rm-1(1-1r?
Put —% =u+iv (u,v €R). Note that A < 0, then (2.15) and (2.16) provide

_ An(A+ B) AnpA
p+DA-B)" T prDA-B

p+1
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N AnpB N Ap[r**((A — Bu)* + (Bv)?) — ((u — 1)*> +1?)]
TEDET N (p+ DA - Byr1(1-12)
_ (1 __An(A+B) )u . Anp (A + Bu?) Ap(r*(A — Bu)*> — (u —1)?)
(p+ 1)(A-B) (p+ 1)(A-B) (p+ DA -B)r1(1-r?)
Ap 1 — B*r" 5
RUE 1><A—B)(r"-1<1 —) _”B)V' @17)
Further, we can see that

1-— B2r2n 1 - r2n

> = 1+ r2 + r4 4o+ r2(n72) + r2(n71))
M1 -r2) " (1 =12 ! (

[+ P00y 4 (2 4 P02y e (2D 4 1)

- 21
>n > —nB. (2.18)

Combining (2.17) and (2.18), we have

(A + Bu?)

Re {(ﬂ, _ 1)Zp+lfl(Z) + /ln(A + B) ) /blp

+2 prr
& (Z)}Sp(l_ p+0A-B)" " p+A-B)
Ap((u = 1)* = r*"(A = Bu)?)
(p+ DA -Br1(1-r)
=2 W), @.19)

p+1

It is known that for |£] < o (0 < 1),

1-Ao 1 + A€ 1+Ac
< Re < .
1+ Bo

< 2.20
1-Bo~  \1+B¢ (2.20)
From (2.20) and(2.14) we have

1-Ar" ptl g1 1+ A"
<u=Re _L f'@ < il .
1 - Br® p 1 + Br®

Now we calculate the maximal value of ¥, (1) on the segment [}:ﬁ, el ] Obviously,

An(A + B) ) N 2AnpB 2Ap((1 = B?r™yu — (1 — ABr™"))

=P\ A T a8t T DA B

_ nR2.2n
W) = 21p ( 1 - Br B)

G+DA-B\rmid=r "

2Anp(1 + B)
< m <0 (see(2.18)and (1.1)) (2.21)

and ¢ (u) = 0 if and only if

2401 -ABP) + A+ B! 1 -r) - (p+ DA - B)r'(1 - r?)
B 2A(1 = B2r? + nBr='(1 — r2))

u=u,
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— Ln
T 2AKR’

where L, and K are given by (2.13). From (2.13) and (2.18) one can see that Kz > 0 and L, < O.
Since

(2.22)

2AKg(1 — Ar'™) — L,(1 — Br")
=22|(1 = Ar")(1 - B = (1 - Br")(1 - ABr™")|
+ Anr" (1= ) [2B(1 — Ar") — (A + B)(1 — Br)] + (p + 1)(A — B)r'(1 — r¥)(1 — Br")
= —21(A - B)r"(1 — B") — an(A — B)r"'(1 = r»)(1 + Br")
+(p+ DA -Br ' -rH(1 - BrY
>0 (1<0),

we see that
1 -Ar"

1 - Br+
But u, is not always less than 1*4%. The following two cases arise.
() u, > A2 that is, M,(A, B, A,r) > 0 (see (2.13)). In view of Y, (u,) = 0 and (2.21), the function

1+Br

W, (1) is increasing on the segment [}:2::, LA ] Thus we deduce from (2.19) that, if M,(A, B, A,r) > 0,
then

(2.23)

U, >

e A 1 +Ar"
Re{(/l—l)z” f(Z)+p+1Zp ! (Z)}Swn(1+Br")

n 1\ 2
:p(l_ An(A + B) )(1+Ar)+ Anp (A+B(1+Ar))
(p+DA-B))\1+Br"]  (p+1)A-B) 1+ Br"

1+Ar" Anp 1+Ar" 1+Ar"
:p1+Br"+(p+1)(A—B)( B 1+Br”)(A_ 1+Br”)
Cplp+ 1+ ((p+ 1A + B)— an(A — B)r" + (p + DAB"]
B (p + 1)(1 + Brn)>

This proves (2.11).
Next we consider the function f(z) € R,(A, B, 0) defined by

_Zp+1fr(z) B 1+AZn
p  1+Bz

It is easy to find that

[p+1+({p+1)A+B)—An(A - B)r*+ (p+ 1)ABr*"]

+1 o7 A +2 p17 _ p
A= D )+ 2 = D S B

which shows that the inequality (2.11) is sharp.

(ii) u, < 1342 that is, M,(A, B, 1,r) < 0. In this case we easily obtain

Re {(/1 - D" f(2) + Lz””f”(z)} < Yn(un). (2.24)
p+1
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In view of (2.13), ¥,,(«) in (2.19) can be written as

P(AKgu? — Lou + AKy)
(p+ DA = B)r-1(1 —r2)’

Un(u) =

Therefore, if M,,(A, B, A,r) < 0, then it follows from (2.22), (2.24) and (2.25) that

+1 7 A +2 17 p(/lKBui - Lnul’l + /IKA)
Re {(/l - D" f(2) + mz” f (z)} < O+ DA B (=)

_ p(4ﬁ2KAKB - L,%)
~4A(p + DA - Brmi(1 - r)Kg'

To show that the inequality (2.12) is sharp, we consider the function f(z) defined by

() 1+ AZ¢(2) 2= Cy
- = and ¢(z) =
p 1 + Bz"¢(z) 1 -c,z

(z €1,

where ¢, € R is determined by

P (r) 1+ A7(r) 1-Ar" 1+ A7
p 1 +Brer) “E\TBm 1+ B |

Clearly, -1 < o(r) < 1,-1<c¢, < 1,]¢(z)] <1 (z € U), and so f(z) € R,(A, B,0). Since
y Y Y

(A el ')
(A—cr)r 1-12"

¢'(r) =
from the above argument we obtain that
+1 p7 A +2 11
(A= Dr" f(r) + ——= " f7(r) = Y(uy).
p+1
Now the proof of Theorem 4 is completed.
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