Research article

The fractional-order unified chaotic system: A general cascade synchronization method and application

  • Received: 23 December 2019 Accepted: 26 April 2020 Published: 09 May 2020
  • MSC : 34D06, 34H10

  • In this paper, we extend the cascade synchronization of integer-order chaotic systems to function cascade synchronization of fractional-order chaotic systems. The nice feature of our method is that a fractional-order chaotic system will synchronize to another system via a scaling function. The rich choices of the scaling function turn our method more general than some existing methods. As applications, we take a fractional-order unified chaotic system as an illustrative example to test the effectiveness.

    Citation: Hongli An, Dali Feng, Li Sun, Haixing Zhu. The fractional-order unified chaotic system: A general cascade synchronization method and application[J]. AIMS Mathematics, 2020, 5(5): 4345-4356. doi: 10.3934/math.2020277

    Related Papers:

  • In this paper, we extend the cascade synchronization of integer-order chaotic systems to function cascade synchronization of fractional-order chaotic systems. The nice feature of our method is that a fractional-order chaotic system will synchronize to another system via a scaling function. The rich choices of the scaling function turn our method more general than some existing methods. As applications, we take a fractional-order unified chaotic system as an illustrative example to test the effectiveness.


    加载中


    [1] T. L. Carroll, L. M. Pecora, Synchronizing nonautonomous chaotic circuits, IEEE Trans. Circuits Syst. II. Analog Digital Signal Proc., 40 (1993), 646-650. doi: 10.1109/82.246166
    [2] U. Parlitz, L. Junge, L. Kocarev, Subharmonic entrainment of unstable period orbits and generalized synchronization, Phys. Rev. Lett., 79 (1997), 3158-3161. doi: 10.1103/PhysRevLett.79.3158
    [3] A. O. Alamodi, K. H. Sun, W. Ai, et al. Design new chaotic maps based on dimension expansion, Chin. Phys. B, 28 (2019), 20503.
    [4] Z. Y. Yan, Chaos Q-S synchronization between Rössler system and the new unified chaotic system, Phys. Lett. A, 334 (2005), 406-412. doi: 10.1016/j.physleta.2004.11.042
    [5] H. T. Yu, J. Wang, B. Deng, et al. Adaptive synchronization control of coupled chaotic neurons in an external electrical stimulation, Chin. Phys. B, 22 (2013), 58701.
    [6] Y. H. Sun, X. P. Wu, L. Q. Bai, et al. Finite-time synchronization control and parameter identification of uncertain permanent magnet synchronous motor, Neurocomputing, 207 (2016), 511-518. doi: 10.1016/j.neucom.2016.05.036
    [7] Z. Li, C. Z. Han, Adaptive synchronization of Rossler and Chen chaotic systems, Chin. Phys. B, 11 (2002), 666-669. doi: 10.1088/1009-1963/11/7/304
    [8] C. Li, X. Liao, K. Wong, Lag synchronization of hyperchaos with application to secure communications, Chaos Solitons Fractals, 23 (2004), 183-193.
    [9] G. H. Li, An active control synchronization for two modified Chua circuits, Chin. Phys. B, 3 (2005), 472-475.
    [10] J. Q. Yang, Y. T. Chen, F. L. Zhu, Associated observer-based synchronization for uncertain chaotic systems subject to channel noise and chaos-based secure communication, Neurocomputing, 167 (2015), 587-595. doi: 10.1016/j.neucom.2015.04.030
    [11] J. Fu, M. Yu, T. D. Ma, Modified impulsive synchronization of fractional order hyperchaotic systems, Chin. Phys. B, 20 (2011), 120508.
    [12] N. Rulkov, M. Sushchik, L. Tsimring, et al. Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. Rev. E, 51 (1995), 980-994. doi: 10.1103/PhysRevE.51.980
    [13] S. Yang, C. Duan, Generalized synchronization in chaotic systems, Chaos Solitons Fractals, 9 (1998), 1703-1707. doi: 10.1016/S0960-0779(97)00149-5
    [14] Q. Han, C. X. Liu, L. Sun, et al. A fractional order hyperchaotic system derived from Liu system and its circuit realization, Chin. Phys. B, 22 (2013), 020502.
    [15] R. X. Zhang, S. P. Yang, Adaptive lag synchronization and parameter identification of fractional order chaotic systems, Chin. Phys. B, 20 (2011), 090512.
    [16] T. L. Carroll, L. M. Pecora, Cascading synchronized chaotic systems, Phys. D, 67 (1993), 126-140. doi: 10.1016/0167-2789(93)90201-B
    [17] J. M. González-Miranda, Synchronization of symmetric chaotic systems, Phys. Rev. E, 53 (1996), 5656-5669. doi: 10.1103/PhysRevE.53.5656
    [18] G. R. Wang, X. L. Yu, S. G. Chen, Chaos control, synchronization and its application, Beijing: National Defence Industry Publishing House, 2001.
    [19] H. L. An, Y. Chen, A function cascade synchronization method with unknown parameters and applications, Chin. Phys. B, 17 (2008), 98-104. doi: 10.1088/1674-1056/17/1/018
    [20] S. Bhalekar, V. Daftardar-Gejji, Synchronization of different fractional order chaotic systems using active control, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 3536-3546. doi: 10.1016/j.cnsns.2009.12.016
    [21] D. Kusnezov, A. Bulgac, G. Dang, Quantum Levy processes and fractional kinetics, Phys. Rev. Lett., 82 (1999), 1136-1139. doi: 10.1103/PhysRevLett.82.1136
    [22] G. Si, Z. Sun, Y. Zhang, et al. Projective synchronization of different fractional-order chaotic systems with non-identical orders, Nonlinear Anal-Real., 13 (2012), 1761-1771. doi: 10.1016/j.nonrwa.2011.12.006
    [23] S. Wang, Y. Yu, H. Wang, et al. Function projective lag synchronization of fractional-order chaotic systems, Chin. Phys. B, 23 (2014), 040502.
    [24] Y. Xu, Q. Li, W. Li, Periodically intermittent discrete observation control for synchronization of fractional-order coupled systems, Commun. Nonlinear Sci. Numer. Simul., 74 (2019), 219-235. doi: 10.1016/j.cnsns.2019.03.014
    [25] G. Erjaee, S. Momani, Phase synchronization in fractional differential chaotic systems, Phys. Lett. A, 372 (2008), 2350-2354. doi: 10.1016/j.physleta.2007.11.065
    [26] Y. Xu, W. Li, Synchronization for fractional-order multi-linked complex network with two kinds of topological structure via periodically intermittent control, Math. Meth. Appl. Sci., 42 (2019), 2379-2397. doi: 10.1002/mma.5516
    [27] J. Wang, Y. Zhang, Designing synchronization schemes for chaotic fractional-order unified systems, Chaos Solitons Fractals, 30 (2006), 1265-1272. doi: 10.1016/j.chaos.2005.09.027
    [28] Y. Chen, Y. Q. Yang, Chaos in the fractional order generalized Lorenz canonical form, Chin. Phys. Lett., 26 (2009), 100501.
    [29] W. Deng, C. Li, J. Lu, Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dyn., 48 (2007), 409-416. doi: 10.1007/s11071-006-9094-0
    [30] H. Tirandaz, A. Hajipour, Adaptive synchronization and anti-synchronization of TSUCS and La unified chaotic systems with unknown parameters, Optik, 130 (2017), 543-549. doi: 10.1016/j.ijleo.2016.10.093
    [31] X. Huang, Z. Zhao, Z. Wang, et al. Chaos and hyperchaos in fractional-order cellular neural networks, Neurocomputing, 94 (2012), 13-21. doi: 10.1016/j.neucom.2012.01.011
    [32] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [33] R. Hilfer, Applications of fractional calculus in physics, New Jersey: World Scientific, 2000.
    [34] K. Diethelm, The Analysis of fractional differential equations: An application-oriented exposition using differential operators of caputo type, Berlin: Springer, 2010.
    [35] I. Grigorenko, E. Grigorenko, Chaotic dynamics of the fractional Lorenz system, Phys. Rev. Lett., 91 (2003), 034101-034108. doi: 10.1103/PhysRevLett.91.034101
    [36] W. H. Deng, C. P. Li, Chaos synchronization of the fractional Lü system, Phys. A, 353 (2005), 61-72. doi: 10.1016/j.physa.2005.01.021
    [37] C. P. Li, G. J. Peng, Chaos in Chen's system with a fractional order, Chaos Solitons Fractals, 22 (2004), 443-450. doi: 10.1016/j.chaos.2004.02.013
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3587) PDF downloads(341) Cited by(5)

Article outline

Figures and Tables

Figures(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog