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Abstract: In this paper, we extend the cascade synchronization of integer-order chaotic systems to
function cascade synchronization of fractional-order chaotic systems. The nice feature of our method
is that a fractional-order chaotic system will synchronize to another system via a scaling function. The
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effectiveness.
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1. Introduction

Since pioneering works of Pecora and Carroll’s [1], chaos synchronization and control have turned
a hot topic and received much attention in various research areas. A number of literatures shows that
chaos synchronization can be widely used in physics, medicine, biology, quantum neuron and
engineering science, particularly in secure communication and telecommunications [1–3]. In order to
realize synchronization, experts have proposed lots of methods, including complete synchronization
and Q-S synchronization [4, 5], adaptive synchronization [6], lag synchronization [7, 8], phase
synchronization [9], observer-based synchronization [10], impulsive synchronization [11],
generalized synchronization [12, 13], lag projective synchronization [14, 15], cascade synchronization
et al [16–20]. Among them, the cascade synchronization method is a very effective algorithm, which
is characterized by reproduction of signals in the original chaotic system to monitor the synchronized
motions.

It is know that, because of the complexity of fractional differential equations, synchronization of
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fractional-order chaotic systems is more difficult but interesting than that of integer-order systems.
Experts find that the key space can be enlarged by the regulating parameters in fractional-order
chaotic systems, which enables the fractional-order chaotic system to be more suitable for the use of
the encryption and control processing. Therefore, synchronization of fractional-order chaotic systems
has gained increasing interests in recent decades [21–31]. It is noticed that most synchronization
methods mentioned in [4–20] work for integer-order chaotic systems. Here, we shall extend to
cascade synchronization for integer-order chaotic systems to a kind of general form, namely function
cascade synchronization (FCS), which means that one chaotic system may be synchronized with
another by sending a signal from one to the other wherein a scaling function is involved. The FCS is
effective both for the fractional order and integer order chaotic systems. It constitutes a general
method, which can be considered as a continuation and extension of earlier works of [13, 16, 19]. The
nice feature of our method is that we introduce a scaling function for achieving synchronization of
fractional-order chaotic systems, which can be chosen as a constant, trigonometric function, power
function, logarithmic and exponential function, hyperbolic function and even combinations of them.
Hence, our method is more general than some existing methods, such as the complete synchronization
approach and anti-phase synchronization approach et al.

To sum up, in this paper, we would like to use the FCS approach proposed to study the
synchronization of fractional-order chaotic systems. We begin our theoretical work with the Caputo
fractional derivative. Then, we give the FCS of the fractional-order chaotic systems in theory.
Subsequently, we take the fractional-order unified chaotic system as a concrete example to test the
effectiveness of our method. Finally, we make a short conclusion.

2. The method of FCS for fractional-order chaotic systems

As for the fractional derivative, there exists a lot of mathematical definitions [32,33]. Here, we shall
only adopt the Caputo fractional calculus, which allows the traditional initial and boundary condition
assumptions. The Caputo fractional calculus is described by

dq f (t)
dtq =

1
Γ(q − n)

∫ t

0

f (n)(ξ)
(t − ξ)q−n+1 dξ, n − 1 < q < n. (2.1)

Here, we give the function cascade synchronization method to fractional-order chaotic systems.
Take a fractional-order dynamical system:

dqx
dtq = f (x) = Lx + N(x) (2.2)

as a drive system. In the above x = (x1, x2, x3)T is the state vector, f : R3 → R3 is a continuous
function, Lx and N(x) represent the linear and nonlinear part of f (x), respectively.

Firstly, on copying any two equations of (2.2) , such as the first two, one will obtain a sub-response
system:

dqy
dtq = L1y + N1(y, x3) + Ũ (2.3)

with y = (X1,Z)T . In the above, x3 is a signal provided by (2.2), while Ũ = (u1, u2)T is a controller to
be devised.
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For the purpose of realizing the synchronization, we now define the error vector function via

ẽ = y − Q̃(x̃)x̃ (2.4)

where ẽ = (e1, e2)T , x̃ = (x1, x2)T and Q̃(x̃) = diag(Q1(x1),Q2(x2)).

Definition 1. For the drive system (2.2) and response system (2.3), one can say that the synchronization
is achieved with a scaling function matrix Q̃(x̃) if there exists a suitable controller Ũ such that

lim
t→∞
||ẽ|| = lim

t→∞
||y − Q̃(x̃)x̃|| = 0. (2.5)

Remark 1. We would like to point out that one can have various different choices on the scaling
function Q̃(x̃), such as constant, power function, trigonometric function, hyperbola function,
logarithmic and exponential function, as well as limited quantities of combinations and composite of
the above functions. Particularly, when Q̃(x̃) = I and −I (I being a unit matrix), the problem is
reducible to the complete synchronization and anti-phase synchronization of fractional-order chaotic
systems, respectively. When Q̃(x̃) = αI, it becomes to the project synchronization. And when
Q̃(x̃)=diag(α1, α2), it turns to the modified projective synchronization. Hence, our method is more
general than the existing methods in [4, 13].

It is noticed from (2.5) that the system (2.3) will synchronize with (2.2) if and only if the error
dynamical system (2.5) is stable at zero. For this purpose, an appropriate controller Ũ such that (2.5)
is asymptotical convergent to zero is designed, which is described in the following theorem.

Theorem 1. For a scaling function matrix Q̃(x̃), the FCS will happen between (2.2) and (2.3) if the
conditions:

(i) the controller Ũ is devised by

Ũ = K̃ẽ − N1(y, x3) + Q̃(x̃)N1(x̃) + P̃(x̃)x̃ (2.6)

(ii) the matrix K̃ is a 2 × 2 matrix such that

L1 + K̃ = −C̃, (2.7)

are satisfied simultaneously. In the above, P̃(x̃) = diag(Q̇1(x1)dq x1
dtq , Q̇2(x2) dq x2

dtq ), K̃ is a 2 × 2 function
matrix to be designed. While C̃ = (C̃i j) is a 2 × 2 function matrix wherein

C̃ii > 0 and C̃i j = −C̃ ji, i , j. (2.8)

Remark 2. It needs to point out that the construction of the suitable controller Ũ plays an important
role in realizing the synchronization between (2.2) and (2.3). Theorem 2 provides an effective way to
design the controller. It is seen from the theorem that the controller Ũ is closely related to the matrix
C̃. Once the condition (2.8) is satisfied, one will has many choices on the controller Ũ.

Remark 3. Based on the fact that the fractional orders themselves are varying parameters and can be
applied as secret keys when the synchronization algorithm is adopted in secure communications, it is
believed that our method will be more suitable for some engineering applications, such as chaos-based
encryption and secure communication.
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Proof: Let’s turn back to the error function given in (2.4). Differentiating this equation with respect
to t and on use of the first two equations of (2.2) and (2.3), one will obtain the following dynamical
system

dqẽ
dtq =

dqy
dtq − Q̃(x̃)

dqx
dtq − P̃(x̃)x̃

= L1y + N1(y, x3) + Ũ − Q̃(x̃)[L1 x̃ + N1(x̃)] − P̃(x̃)x̃

= L1ẽ + N1(y, x3) − Q̃(x̃)N1(x̃) − P̃(x̃)x̃ + K̃ẽ − N1(y, x3) + Q̃(x̃)N1(x̃) + P̃(x̃)x̃

= (L1 + K̃)ẽ. (2.9)

Assuming that λ is an arbitrary eigenvalue of matrix L1 + K̃ and its eigenvector is recorded as η, i.e.

(L1 + K̃)η = λη, η , 0. (2.10)

On multiplying (2.10) by ηH on the left, we obtain that

ηH(L1 + K̃)η = ληHη (2.11)

where H denotes conjugate transpose. Since λ̄ is also an eigenvalue of L1 + K̃, we have that

ηH(L1 + K̃)H = λ̄ηH. (2.12)

On multiplying (2.12) by η on the right, we derive that

ηH(L1 + K̃)Hη = λ̄ηHη (2.13)

From (2.11) and (2.13), one can easily get that

λ + λ̄ = ηH[(L1 + K̃)H + (L1 + K̃)]η/ηHη

= −ηH(C̃ + C̃H)η/ηHη

= −ηHΛη/ηHη (2.14)

with Λ = C̃ + C̃H. Since C̃ satisfy the condition (2.8), one can know that Λ denotes a real positive
diagonal matrix. Thus we have ηHΛη > 0. Accordingly, we can get

λ + λ̄ = 2Re(λ) = −ηHΛη/ηHη < 0, (2.15)

which shows

|argλ| >
π

2
>

qπ
2
. (2.16)

According to the stability theorem in Ref. [34], the error dynamical system (2.9) is asymptotically
stable, i.e.

lim
t→∞
||ẽ|| = lim

t→∞
||y − Q̃(x̃)x̃|| = 0, (2.17)
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which implies that synchronization can be achieved between (2.2) and (2.3). The proof is completed.
�

Next, on copying the last two equations of (2.2), one will get another sub-response system:

dqz
dtq = L2z + N2(z, X1) + Ū (2.18)

where X1 is a synchronized variable in (2.3), z = (X2, X3)T and Ū = (u3, u4)T is the controller being
designed.

Here, we make analysis analogous to the above. Now we define the error ē via

ẽ = z − Q̄(x̄)x̄ (2.19)

where ē = (e3, e4)T , x̄ = (x2, x3)T and Q̄(x̄) = diag(Q3(x2),Q4(x3)). If devising the the controller Ū as

Ū = K̄ē − N2(z, X1) + Q̄(x̄)N2(x̄) + P̄(x̄)x̄ (2.20)

and L2 + K̄ satisfying

L2 + K̄ = −C̄ (2.21)

where P̄(x̄) = diag(Q̇3(x2)dq x2
dtq , Q̇4(x3) dq x3

dtq ), C̄ = (C̄i j) denotes a 2 × 2 function matrix satisfying

C̄ii > 0 and C̄i j = −C̄ ji, i , j, (2.22)

then the error dynamical system (2.19) satisfies

lim
t→∞
||ē|| = lim

t→∞
||z − Q̄(x̄)x̄|| = 0. (2.23)

Therefore, one achieve the synchronization between the system (2.2) and (2.18). Accordingly,
from (2.5) and (2.23), one can obtain that

lim
t→∞
||X1 − Q1(x1)x1|| = 0,

lim
t→∞
||X2 − Q3(x2)x2|| = 0,

lim
t→∞
||X3 − Q4(x3)x3|| = 0.

(2.24)

which indicates the FCS is achieved for the fractional order chaotic systems.

3. Applications of FCS method to fractional-order unified chaotic system

In the sequel, we shall extend the applications of FCS approach to the fractional-order unified
chaotic system to test the effectiveness.

The fractional-order unified chaotic system is described by:

dqx1

dtq = (25a + 10)(x2 − x1),

dqx2

dtq = (28 − 35a)x1 − x1x3 + (29a − 1)x2,

dqx3

dtq = x1x2 −
a + 8

3
x3,

(3.1)
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where xi, (i = 1, 2, 3) are the state parameters and a ∈ [0, 1] is the control parameter. It is know that
when 0 ≤ a < 0.8, the system (3.1) corresponds to the fractional-order Lorenz system [35]; when
a = 0.8, it is the Lü system [36]; while when 0.8 < a < 1, it turns to the Chen system [37].

According to the FCS method in section 2, we take (3.1) as the drive system. On copying the first
two equation, we get a sub-response system of (3.1):

dqX1

dtq = (25a + 10)(Z − X1) + u1,

dqZ
dtq = (28 − 35a)X1 − Zx3 + (29a − 1)Z + u2,

(3.2)

where Ũ = (u1, u2)T is a controller to be determined. In the following, we need to devise the desired
controller Ũ such that (3.1) can be synchronized with (3.2). For this purpose, we set the error function
ẽ = (e1, e2) via :

ẽ = (e1, e2) = (X1 − x1(x2
1 + α1),Z − x2 tanh x2). (3.3)

On devising the controller Ũ as (2.6), one can get that the error dynamical system is

dqẽ
dtq = (L1 + K̃)ẽ, (3.4)

where

L1 =

(
−10 − 25a −10 − 25a
28 − 35a 29a − 1

)
, N1(y, x3) =

(
0

−X1x3

)
. (3.5)

If choosing, for example, the matrix K̃ as

K̃ =

(
−λ1 + 25a + 10 x1 + x1x2 − 25a

−x1 − x1x2 + 35a − 38 −λ2 − 29a + 1

)
, (3.6)

where λ1 > 0 and λ2 > 0, then one can obtain that

C̃ =

(
−λ1 x1 + x1x2 + 10

−x1 − x1x2 − 10 −λ2

)
. (3.7)

Therefore the dynamical system (3.4) becomes

dqẽ
dtq =

(
−λ1 x1 + x1x2

−x1 − x1x2 −λ2

)
ẽ. (3.8)

According to Theorem 2, the synchronization is realized in the system (3.1) and (3.2).
Subsequently, on copying the last two equations of (3.1), we get another sub-response system:

∂qX2

∂tq = (28 − 35a)X1 − X1X3 + (29a − 1)X2 + u3,

∂qX3

∂tq = X1X2 −
a + 8

3
X3 + u4,

(3.9)
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where Ū = (u3, u4)T is the controller needed. When choosing the error function ē = (e3, e4) as:

ē = (e3, e4) = (X2 − α2x2, X3 − x3(α3 + e−x3)), (3.10)

and the controller Ū as (2.20), where

L2 =

(
29a − 1 0

0 −a+8
3

)
, N2(z, X1) =

(
−X1X3

X1X2

)
, (3.11)

and the matrix K̄ is chosen by

K̄ =

(
−λ3 − 29a + 1 1 + x2x3 + e−x3

−1 − x2x3 − e−x3 −λ4 −
a+8

3

)
, (3.12)

where λ3 > 0 and λ4 > 0. Calculations show that the error dynamical system (2.19) becomes

dqē
dtq =

(
−λ3 1 + x2x3 + e−x3

−1 − x2x3 − e−x3 −λ4

)
ē. (3.13)

which, according to the stability theorem, indicates that ē will approach to zero with time evolutions.
Therefore, the FCS is realized for the fractional-order unified chaotic system.

In the above, we have revealed that the FCS is achieved for the fractional-order unified chaotic
system in theory. In the sequel, we shall show that the FCS is also effective in the numerical algorithm.

For illustration, we set the fractional order q = 0.98 and the parameters λi(i = 1, · · · , 4) as
(λ1, λ2, λ3, λ4) = (2, 3, 0.5, 0.3). It is noticed that when the value of a ∈ [0, 1] is given, the system (3.1)
will be reduced to a concrete system. For example, when a = 0.2, it corresponds to the
fractional-order Lorenz system. The chaotic attractors are depicted in Figure 1. Time responses of
states variables and synchronization errors of the Lorenz system are showed in Figures 2 and 3,
respectively. When a = 0.8, it is the fractional-order Lü system. The chaotic attractors, time responses
of state variables and synchronization errors are exhibited in Figures 4–6, respectively. When
a = 0.95, it turns to the fractional-order Chen system. Numerical simulation results are depicted in
Figures 7–9. From the chaotic attractors pictures marked by Figures 1, 4 and 5, one can easily see that
the trajectories of the response system (colored red) display certain consistency to that of the drive
system (colored black) because of the special scaling functions chosen. Meanwhile, one can also see
the synchronization is realized from Figures 3, 6 and 9. Therefore, we conclude that the FCS is a very
effective algorithm for achieving the synchronization of the fractional-order unified chaotic system.
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Figure 1. FCS of the fractional-order Lorenz system. Here we choose (α1, α2, α3) =

(0.2, 2,−1.5), initial values (x1, x2, x3) = (−1,−0.5,−0.2) and (X1, X2, X3) = (0.2, 0.3, 0.1).

AIMS Mathematics Volume 5, Issue 5, 4345–4356.



4352

0 5 10 15

t

-40

-20

0

20

40

60

80

100

x1
(X

1)

x1
X1

0 5 10 15
t

-40

-20

0

20

40

x2
(X

2)

x2
X2

0 5 10 15
t

-20

0

20

40

60

80

100

120

140

x3
(X

3)

x3
X3

Figure 2. Time responses of state variables xi and Xi(i = 1, 2, 3) for the fractional-order
Lorenz system.
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Figure 3. Synchronization errors of the Lorenz system.
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Figure 4. FCS of the fractional-order Lü system with a = 0.8. Here we choose (α1, α2, α3) =

(−0.5, 2.5), initial values (x1, x2, x3) = (0.5,−0.5, 0.2) and (X1, X2, X3) = (0.15,−0.1,−0.1).
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Figure 5. Time responses of state variables xi and Xi(i = 1, 2, 3) for the Lü system.
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Figure 6. Synchronization errors of the Lü system.
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Figure 7. FCS of the fractional-order Chen system with a = 0.95. Here we choose
(α1, α2, α3) = (0.5, 1.5, 3), initial values (x1, x2, x3) = (1.5, 0.02,−0.01) and (X1, X2, X3) =

(−2, 0.01,−0.05).

0 5 10 15
t

-40

-20

0

20

40

60

80

100

x1
(X

1)

x1
X1

0 5 10 15
t

-60

-40

-20

0

20

40

60

x2
(X

2)

x2
X2

0 5 10 15
t

0

50

100

150

x3
(X

3)

x3
X3

Figure 8. Time evolutions of state variables xi and Xi(i = 1, 2, 3) for the Chen system.
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Figure 9. Synchronization errors of the Chen system.
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4. Conclusions

Chaos synchronization, because of the potential applications in telecommunications, control theory,
secure communication et al, has attracted great attentions from various research fields. In the present
work, via the stability theorem, we successfully extend the cascade synchronization of integer-order
chaotic systems to a kind of general function cascade synchronization algorithm for fractional-order
chaotic systems. Meanwhile, we apply the method to the fractional-order unified chaotic system for an
illustrative test. Corresponding numerical simulations fully reveal that our method is not only accuracy,
but also effective.

It is worthy of pointing out that the scaling function introduced makes the method more general
than the complete synchronization, anti-phase synchronization, modified projective synchronization et
al. Therefore, in this sense, our method is applicable and representative. However, the present work
just study the fractional-order chaotic system without time-delay. It is known that in many cases the
time delay is inevitably in the real engineering applications. Lag synchronization seems to be more
practical and reasonable. Hence, it will be of importance and interest to study whether the FCS method
can be used to realize the synchronization of fractional-order chaotic systems with time-delay. We
shall considered it in our future work.
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