Citation: Feng Cheng. On the dissipative solutions for the inviscid Boussinesq equations[J]. AIMS Mathematics, 2020, 5(4): 2869-2876. doi: 10.3934/math.2020184
[1] | T. Buckmaster, Onsager's conjecture almost everywhere in time, Commun. Math. Phys., 333 (2015), 1175-1198. doi: 10.1007/s00220-014-2262-z |
[2] | T. Buckmaster, C. De Lellis, P. Isett, et al. Anomalous dissipation for 1/5-Hölder Euler flows, Ann. Math., 182 (2015), 127-172. doi: 10.4007/annals.2015.182.1.3 |
[3] | T. Buckmaster, C. De Lellis, L. Székelyhidi Jr, Dissipative Euler flows with Onsager critical spatial regularity, Commun. Pur. Appl. Math., 69 (2016), 1613-1670. doi: 10.1002/cpa.21586 |
[4] | F. Cheng, C. J. Xu, Analytical smoothing effect of solution for the Boussinesq equations, Acta Math. Sci., 39 (2019), 165-179. doi: 10.1007/s10473-019-0114-9 |
[5] | A. Cheskidov, P. Constantin, S. Friedlander, et al. Energy conservation and Onsager's conjecture for the Euler equations, Nonlinearity, 21 (2008), 1233-1252. doi: 10.1088/0951-7715/21/6/005 |
[6] | P. Constantin, E. Weinan, E. S. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equation, Commun. Math. Phys., 165 (1994), 207-209. doi: 10.1007/BF02099744 |
[7] | A. E. Gill, Atmosphere-Ocean Dynamics, Academic Press, 1982. |
[8] | A. Larios, E. Lunasin, E. S. Titi, Global well-posedness for the 2D Boussinesq system without heat diffusion and with either anisotropic viscosity or inviscid Voigt-α regularization, arXiv:1010.5024. |
[9] | C. De Lellis, L. Székelyhidi Jr, On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. An., 195 (2010), 225-260. doi: 10.1007/s00205-008-0201-x |
[10] | C. De Lellis, L. Székelyhidi Jr, Dissipative continuous Euler flows, Invent. Math., 193 (2013), 377-407. doi: 10.1007/s00222-012-0429-9 |
[11] | C. De Lellis, L. Székelyhidi Jr, Dissipative Euler flows and Onsager's conjecture, J. Eur. Math. Soc., 16 (2014), 1467-1505. doi: 10.4171/JEMS/466 |
[12] | P. L. Lions, Mathematical Topics in Fluid Mechanics, New York: The Clarendon Press Oxford University Press, 1996. |
[13] | A. J. Majda, A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, 2002. |
[14] | A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, 2003. |
[15] | J. Pedlosky, Geophysical Fluid Dynamics, New York: Springer-Verlag, 1987. |
[16] | L. Saint-Raymond, Convergence of solutions to the Boltzmann equation in the incompressible Euler limit, Arch. Ration Mech. An., 166 (2003), 47-80. doi: 10.1007/s00205-002-0228-3 |
[17] | L. Saint-Raymond, Hydrodynamic limits: some improvements of the relative entropy method, Annales de l'IHP Analyse non linéaire, 26 (2009), 705-744. doi: 10.1016/j.anihpc.2008.01.001 |
[18] | A. Shnirelman, Weak solutions with decreasing energy of incompressible Euler equations, Commun. Math. Phys., 210 (2000), 541-603. doi: 10.1007/s002200050791 |
[19] | T. Tao, L. Zhang, Hölder continuous solutions of Boussinesq equation with compact support, J. Funct. Anal., 272 (2017), 4334-4402. doi: 10.1016/j.jfa.2017.01.013 |
[20] | T. Tao, L. Zhang, On the continuous periodic weak solutions of Boussinesq equations, SIAM J. Math. Anal., 50 (2018), 1120-1162. doi: 10.1137/17M1115526 |
[21] | T. Tao, L. Zhang, Hölder continuous solutions of Boussinesq equations, Acta Math. Sci., 38 (2018), 1591-1616. doi: 10.1016/S0252-9602(18)30834-8 |