Research article

On the dissipative solutions for the inviscid Boussinesq equations

  • Received: 24 November 2019 Accepted: 11 February 2020 Published: 18 March 2020
  • MSC : 35A01, 35Q35, 76B03

  • In this paper, we study the dissipative solutions for the inviscid Boussinesq equations. It is shown that there is at least one dissipative solution for the inviscid incompressible Boussinesq equations. Moreover, if there is an unique strong solution then the dissipative solutions must coincide with the strong solution.

    Citation: Feng Cheng. On the dissipative solutions for the inviscid Boussinesq equations[J]. AIMS Mathematics, 2020, 5(4): 2869-2876. doi: 10.3934/math.2020184

    Related Papers:

  • In this paper, we study the dissipative solutions for the inviscid Boussinesq equations. It is shown that there is at least one dissipative solution for the inviscid incompressible Boussinesq equations. Moreover, if there is an unique strong solution then the dissipative solutions must coincide with the strong solution.


    加载中


    [1] T. Buckmaster, Onsager's conjecture almost everywhere in time, Commun. Math. Phys., 333 (2015), 1175-1198. doi: 10.1007/s00220-014-2262-z
    [2] T. Buckmaster, C. De Lellis, P. Isett, et al. Anomalous dissipation for 1/5-Hölder Euler flows, Ann. Math., 182 (2015), 127-172. doi: 10.4007/annals.2015.182.1.3
    [3] T. Buckmaster, C. De Lellis, L. Székelyhidi Jr, Dissipative Euler flows with Onsager critical spatial regularity, Commun. Pur. Appl. Math., 69 (2016), 1613-1670. doi: 10.1002/cpa.21586
    [4] F. Cheng, C. J. Xu, Analytical smoothing effect of solution for the Boussinesq equations, Acta Math. Sci., 39 (2019), 165-179. doi: 10.1007/s10473-019-0114-9
    [5] A. Cheskidov, P. Constantin, S. Friedlander, et al. Energy conservation and Onsager's conjecture for the Euler equations, Nonlinearity, 21 (2008), 1233-1252. doi: 10.1088/0951-7715/21/6/005
    [6] P. Constantin, E. Weinan, E. S. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equation, Commun. Math. Phys., 165 (1994), 207-209. doi: 10.1007/BF02099744
    [7] A. E. Gill, Atmosphere-Ocean Dynamics, Academic Press, 1982.
    [8] A. Larios, E. Lunasin, E. S. Titi, Global well-posedness for the 2D Boussinesq system without heat diffusion and with either anisotropic viscosity or inviscid Voigt-α regularization, arXiv:1010.5024.
    [9] C. De Lellis, L. Székelyhidi Jr, On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. An., 195 (2010), 225-260. doi: 10.1007/s00205-008-0201-x
    [10] C. De Lellis, L. Székelyhidi Jr, Dissipative continuous Euler flows, Invent. Math., 193 (2013), 377-407. doi: 10.1007/s00222-012-0429-9
    [11] C. De Lellis, L. Székelyhidi Jr, Dissipative Euler flows and Onsager's conjecture, J. Eur. Math. Soc., 16 (2014), 1467-1505. doi: 10.4171/JEMS/466
    [12] P. L. Lions, Mathematical Topics in Fluid Mechanics, New York: The Clarendon Press Oxford University Press, 1996.
    [13] A. J. Majda, A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, 2002.
    [14] A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, 2003.
    [15] J. Pedlosky, Geophysical Fluid Dynamics, New York: Springer-Verlag, 1987.
    [16] L. Saint-Raymond, Convergence of solutions to the Boltzmann equation in the incompressible Euler limit, Arch. Ration Mech. An., 166 (2003), 47-80. doi: 10.1007/s00205-002-0228-3
    [17] L. Saint-Raymond, Hydrodynamic limits: some improvements of the relative entropy method, Annales de l'IHP Analyse non linéaire, 26 (2009), 705-744. doi: 10.1016/j.anihpc.2008.01.001
    [18] A. Shnirelman, Weak solutions with decreasing energy of incompressible Euler equations, Commun. Math. Phys., 210 (2000), 541-603. doi: 10.1007/s002200050791
    [19] T. Tao, L. Zhang, Hölder continuous solutions of Boussinesq equation with compact support, J. Funct. Anal., 272 (2017), 4334-4402. doi: 10.1016/j.jfa.2017.01.013
    [20] T. Tao, L. Zhang, On the continuous periodic weak solutions of Boussinesq equations, SIAM J. Math. Anal., 50 (2018), 1120-1162. doi: 10.1137/17M1115526
    [21] T. Tao, L. Zhang, Hölder continuous solutions of Boussinesq equations, Acta Math. Sci., 38 (2018), 1591-1616. doi: 10.1016/S0252-9602(18)30834-8
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3122) PDF downloads(356) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog