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1. Introduction

We consider the following N-dimensional inviscid Boussinesq equations on the N-dimensional
torus TN , 

∂tu + u · ∇u + ∇p = θeN ,

∂tθ + u · ∇θ = 0,
div u = 0,
u(0, x) = u0(x), θ(0, x) = θ0(x),

(1.1)

where u(t, x) = (u1, . . . , uN)(t, x) represents the vector velocity field, θ(t, x) the scalar temperature,
p(t, x) the scalar pressure, and eN = (0, . . . , 0, 1) the unit normal vector. The unknown functions are
supposed to satisfy the periodic boundary conditions, and we remark that the results we reach below can
be extended or adapted to the case of whole space RN or to the case of Dirichlet boundary conditions.

The Boussinesq equations are commonly used to model large scale atmospheric and oceanic flows,
for example, tornados, cyclones, and hurricanes. It describes the dynamics of fluid influenced by
gravitational force,which playes an very important role in the study of Rayleigh-Bérnard convection,
see [7, 13–15].

Besides the physical significance, for the inviscid Boussinesq equations, it is supposed that these
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equations have strong resemblance with the incompressible Euler equations in many aspects. Among
them, the challenging open problem of global regularity of the inviscid Boussinesq equations shared
the attention with the problem of Euler equations for many years.

Recently, a considerable literature are devoted to the study of the energy dissipation for the
incompressible Euler equation. In particular, the existence of weak solutions with kinetic energy
strictly decaying (or increasing, which is equivalent since the Euler flow is reversible) over time is
investigated in [9, 18]. The Onsager’s conjecture [5, 6] ensures that the energy dissipation cannot hold
beyond a certain regularity threshold. Thus, it is crucial to consider rather low regularity weak
solution of the incompressible Euler system in order to understand energy dissipation and turbulent
flow. In this direction, many developments [1–3, 10, 11] are acheived on the existence of energy
dissipating flows enjoying some Hölder regularity. For the inviscid Boussinesq equations, there are
similar studies on the Hölder continuous weak solution, for references see [19–21].

In this paper, we study the dissipative solutions for the inviscid Boussinesq equations. The concept
of dissipative solution is analogous to [12] in which Lions established the existence of dissipative
solution for the incompressible Euler system. The dissipative solutions have two advantages, on one
hand they exist globally in time for large initial data in the energy space, on the other hand they allow
energy dissipation phenomena to occur. In general, they are not shown to be unique. However, they
coincide with the unique strong solution when the latter exists. They also have an important application
in a wide range of asymptotic problems, see [16, 17].

The paper is organized as follows. In Section 2, we will give some notations and provide a suitable
notion of dissipative solution for the inviscid Boussinesq equation. In Section 3, we prove that there
exists a dissipative solution.

2. Notations and main theorem

In this section we will give some notations. Throughout the paper, C denotes a generic constant
which may vary from line to line.

Let v = (v1, . . . , vN) be a vector function. We say that v ∈ L2(TN)N which means vi ∈ L2(TN) for

each 1 ≤ i ≤ N. We denote the L2 norm of v by ‖v‖L2 =
√∑

1≤i≤d ‖vi‖
2
L2 . Let ρ ∈ L2(TN) be a scalar

function. We say the pair (v, ρ) ∈ L2(TN)N × L2(TN) which means v ∈ L2(TN)N , ρ ∈ L2(TN). We denote
the L2 norm of the pair (v, ρ) to be

‖(v, ρ)‖L2 =

√
‖v‖2

L2 + ‖ρ‖2
L2 .

Denote 〈·, ·〉 to be the inner product in L2 either for vector function or scalar function. Since we work in
TN throughout the paper, we sometimes omit the notation of domain TN when no confusion arise. We
also remark that the following arguments are valid for arbitrary dimension N ≥ 2, and it is of course
more reasonable to consider the case N = 2 or 3.

Analogous to [12], we first expalin how to modulate the basic energy and establish the so-called
weak-strong stability inequality. With such stability inequality, we can provide a suitable notion of
dissipative solution for the invisicd incompressible Boussinesq equations in any dimension.

Proposition 2.1. Let (u, θ) be a smooth solution to the incompressible inviscid Boussinesq Eq. (1.1).
Further, for any 0 < T < +∞, consider test functions (v, ρ) ∈ C∞([0,T ] × TN) such that div v = 0 and
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denote v(0, x) = v0, ρ(0, x) = ρ0 and

A(v, ρ) =

(
A1(v, ρ)
A2(v, ρ)

)
=

(
−∂tv − P(v · ∇v) + P(ρeN)

−∂tρ − v · ∇ρ

)
,

where P is the projection onto periodic divergence-free vector fields.
Then, for any 0 < T < +∞, the following stability inequality holds for 0 < t < T,

‖(u − v, θ − ρ)(t, ·)‖2L2 ≤ exp
[ ∫ t

0
(1 + 2‖d−‖∞ + ‖∇ρ‖L∞)ds

]
‖(u0 − v0, θ0 − ρ0)‖2L2

+

∫ t

0

[ ∫
TN

A(v, ρ) ·
(

u − v
θ − ρ

)
dx

]
(s) exp

[ ∫ t

s
(1 + 2‖d−‖∞ + ‖∇ρ‖L∞)dσ

]
ds,

(2.1)

where d(= d(v)) = ( 1
2 (∂iv j + ∂ jvi))i j, and

‖d−‖∞ = ‖(sup
|ξ|=1
−(dξ, ξ))+‖L∞(Td).

Proof. Since (u, θ) is a solution to the Boussinesq Eq. (1.1) and note that v is divergence free, we can
write

∂t(u − v) + u · ∇(u − v) + (u − v) · ∇v + ∇π = (θ − ρ)eN + A1(v, ρ), (2.2)

and
∂t(θ − ρ) + u · ∇(θ − ρ) + (u − v) · ∇ρ = A2(v, ρ), (2.3)

for some scalar function π. Then, multiplying (2.2) by (u − v) and (2.3) by θ − ρ and integrating over
TN , we obtain

d
dt
‖(u − v)(t, ·)‖2L2 = − 2

∫
TN

(d(u − v), u − v)dx + 2
∫
TN

(θ − ρ)eN · (u − v)dx

+ 2
∫
TN

A1(v, ρ) · (u − v)dx,
(2.4)

and
d
dt
‖(θ − ρ)(t, ·)‖2L2 = −2

∫
TN

(u − v) · ∇ρ(θ − ρ)dx + 2
∫
TN

A2(v, ρ)(θ − ρ)dx. (2.5)

By Cauchy’s inequality, we find∣∣∣∣∣ ∫
TN

(θ − ρ)eN · (u − v)dx
∣∣∣∣∣ ≤ ‖θ − ρ‖L2‖(u − v)‖L2 ≤

1
2
‖(u − v, θ − ρ)‖2L2 ,

and ∣∣∣∣∣ ∫
TN

(u − v) · ∇ρ(θ − ρ)dx
∣∣∣∣∣ ≤ ‖∇ρ‖L∞‖u − v‖L2‖θ − ρ‖L2 ≤

‖∇ρ‖L∞

2
‖(u − v, θ − ρ)‖2L2 .

Adding (2.4) and (2.5) together, we arrive at
d
dt
‖(u − v, θ − ρ)(t, ·)‖2L2 ≤ 2‖d−‖∞‖u − v‖2L2 + (1 + ‖∇ρ‖L∞)‖(u − v, θ − ρ)‖2L2

+ 2
∫
TN

A(v, ρ) ·
(

u − v
θ − ρ

)
dx

≤ (1 + 2‖d−‖∞ + ‖∇ρ‖L∞)‖(u − v, θ − ρ)‖2L2

+ 2
∫
TN

A(v, ρ) ·
(

u − v
θ − ρ

)
dx.
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By Grownwall’s inequality, we deduce

‖(u − v, θ − ρ)(t, ·)‖2L2 ≤ exp
[ ∫ t

0
(1 + 2‖d−‖∞ + ‖∇ρ‖L∞)ds

]
‖(u0 − v0, θ0 − ρ0)‖2L2

+

∫ t

0

[ ∫
TN

A(v, ρ) ·
(

u − v
θ − ρ

)
dx

]
(s) exp

[ ∫ t

s
(1 + 2‖d−‖∞ + ‖∇ρ‖L∞)dσ

]
ds.

(2.6)

Then (2.1) is proved. �

By analogy with Lions’ dissipative solution to the incompressible Euler system [ [12], Section 4.4],
we provide the definition of dissipative solution for the incompressible inviscid Boussinesq equation.

Definition 2.1. Let N = 2 or 3. For ∀ 0 < T < +∞, u ∈ L∞([0,T ]; L2)N ∩ C([0,T ]; L2 − w),
θ ∈ L∞([0,T ]; L2) ∩ C([0,T ]; L2 − w). Then (u, θ) is called a dissipative solution of the inviscid
incompressible Boussinesq Eq. (1.1) if u(0, x) = u0(x), θ(0, x) = θ0(x) and div u = 0 inD′([0,T ] × TN)
and (2.1) holds for all v ∈ C([0,T ]; L2)N , ρ ∈ C([0,T ]; L2) such that
d ∈ L1(0,T ; L∞),∇ρ ∈ L1(0,T ; L∞), A(v, ρ) ∈ L1(0,T ; L2) and div v = 0 inD′([0,T ] × TN).

Remark 2.1. The inequality (2.1) is called the weak-strong stability inequality. If we take v = 0, ρ = 0,
then (2.1) reduces to

‖(u, θ)(t, ·)‖2L2 ≤ et‖(u0, θ0)‖2L2 ,

which is the formal energy inequality for the inviscid Boussinesq Eq. (1.1). Furthermore, if (v, ρ) is the
unique strong solution of the inviscid Boussinesq Eq. (1.1) with the same initial data, then from (2.1)
and the Grönwall’s inequality of intergral form we immediately have u = v, θ = ρ for any dissipative
solution (u, θ) satisfying the Definition 2.1. And that property is also called the weak-strong uniqueness.

3. Existence of dissipative solution

As previously mentioned, dissipative solutions define actual solutions in the sense that they coincide
with the unique strong solution when the latter exists. The following theorem asserts their existence.

Theorem 3.1. There exists at least one dissipative solution to the inviscid Boussinesq Eq. (1.1).

Proof. We first consider the following viscous Boussinesq equations
∂tuν + uν · ∇uν + ∇pν − ν∆uν = θνed,

∂tθν + uν · ∇θν − ν∆θν = 0,
div uν = 0,

uν(0, x) = u0, θν(0, x) = θ0.

(3.1)

By standard energy method [4,8], there is a Leray-Hopf weak solution (uν, θν) to the viscous Boussinesq
equations satisfying the energy inequalities

‖θν(t, ·)‖2L2 + 2ν
∫ t

0
‖∇θν(s, ·)‖2L2ds ≤ ‖θ0‖

2
L2 , (3.2)
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and

‖uν(t, ·)‖2L2 + 2ν
∫ t

0
‖∇uν(s, ·)‖2L2ds ≤ C‖u0‖

2
L2 + Ct2‖θ0‖

2
L2 , (3.3)

where C > 0 is a constant independent of ν.
Then we consider (v, ρ) as in Definition 2.1, noting that for all 0 < T < +∞ (v, ρ) can be taken

arbitrary smooth on [0,T ] × TN . Then we can write

∂t(uν − v) − ν∆uν + uν · ∇(uν − v) + (uν − v) · ∇v + ∇πν = (θν − ρ)eN + A1(v, ρ), (3.4)

and
∂t(θν − ρ) − ν∆θν + uν · ∇(θν − ρ) + (uν − v) · ∇ρ = A2(v, ρ). (3.5)

Then we multiply both sides of (3.4) by uν − v and integrate over TN to obtain

1
2

d
dt
‖(uν − v)(t, ·)‖2L2−ν〈∆uν, uν − v〉 + 〈(uν − v) · ∇v, uν − v〉

= 〈(θν − ρ)eN , uν − v〉 + 〈A1(v, ρ), uν − v〉.
(3.6)

Similarly, multiplying both sides of (3.5) by θν − ρ and integrating over TN , we get

1
2

d
dt
‖(θν − ρ)(t, ·)‖2L2 − ν〈∆θν, θν − ρ〉 + 〈(uν − v) · ∇ρ, θν − ρ〉 = 〈A2(v, ρ), θν − ρ〉. (3.7)

Summing up (3.6) with (3.7), by use of Hölder inequality we arrive at

1
2

d
dt
‖(uν − v, θν − ρ)(t, ·)‖2L2 ≤ ν‖∇uν‖L2‖∇v‖L2 + ν‖∇θν‖L2‖∇ρ‖L2

+ ‖d−‖∞‖(uν − v)‖2L2 + (1 + ‖∇ρ‖L∞)‖uν − v‖L2‖θν − ρ‖L2

+

∫
TN

A(v, ρ) ·
(

uν − v
θν − ρ

)
dx.

By Cauchy’s inequality, we have

d
dt
‖(uν − v, θν − ρ)(t, ·)‖2L2 ≤ 2ν‖∇uν‖L2‖∇v‖L2 + 2ν‖∇θν‖L2‖∇ρ‖L2

+ (1 + 2‖d−‖∞ + ‖∇ρ‖L∞)‖(uν − v, θν − ρ)‖2L2

+ 2
∫
TN

A(v, ρ) ·
(

uν − v
θν − ρ

)
dx.

By Gröwnwall’s inequality, we obtain

‖(uν − v, θν − ρ)(t, ·)‖2L2 ≤ exp
[ ∫ t

0
(1 + 2‖d−‖∞ + ‖∇ρ‖L∞)ds

]
×

∫ t

0

(
2ν‖∇uν‖L2‖∇v‖L2 + 2ν‖∇θν‖L2‖∇ρ‖L2

)
ds

+ exp
[ ∫ t

0
(1 + 2‖d−‖∞ + ‖∇ρ‖L∞)ds

]
‖(u0 − v0, θ0 − ρ0)‖2L2

+

∫ t

0

[ ∫
TN

A(v, ρ) ·
(

uν − v
θν − ρ

)
dx

]
(s) exp

[ ∫ t

s
(1 + 2‖d−‖∞ + ‖∇ρ‖L∞)dσ

]
ds.

(3.8)
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Noting that from (3.2) and (3.3), we have for all 0 < T < ∞

ν

∫ T

0
‖∇uν(s, ·)‖2L2ds + ν

∫ T

0
‖∇θν(s, ·)‖2L2ds ≤ CT ,

where CT depends on the initial data (u0, θ0) and T but not on ν. Thus we have∫ t

0
ν‖∇uν‖L2‖∇v‖L2ds ≤

√
ν
(
ν

∫ t

0
‖∇uν‖2L2ds

)1/2

‖∇v‖L2(dxds)

≤ CT
√
ν‖∇v‖L2(dxds),

(3.9)

and ∫ t

0
ν‖∇θν‖L2‖∇ρ‖L2ds ≤

√
ν
(
ν

∫ t

0
‖∇θν‖

2
L2ds

)1/2

‖∇ρ‖L2(dxds)

≤ CT
√
ν‖∇ρ‖L2(dxds).

(3.10)

Substituting (3.9) and (3.10) into (3.8), we then get

‖(uν − v, θν − ρ)(t, ·)‖2L2 ≤ exp
[ ∫ t

0
(1 + 2‖d−‖∞ + ‖∇ρ‖L∞)ds

]
×CT

√
ν(‖∇v‖L2(dxds) + ‖∇ρ‖L2(dxds))

+ exp
[ ∫ t

0
(1 + 2‖d−‖∞ + ‖∇ρ‖L∞)ds

]
‖(u0 − v0, θ0 − ρ0)‖2L2

+

∫ t

0

[ ∫
TN

A(v, ρ) ·
(

uν − v
θν − ρ

)
dx

]
(s) exp

[ ∫ t

s
(1 + 2‖d−‖∞ + ‖∇ρ‖L∞)dσ

]
ds.

(3.11)

Then we need to pass to limit in the above inequality. When N = 2, by use of Sobolev embedding, we
have

∂tuν ∈ L2([0,T ]; H−1) + L∞
(
[0,T ]; L2),

∂tθν ∈ L2([0,T ]; H−1).
It is possible to show that (uν, θν) converges to (u, θ) ∈ C

(
[0,T ]; w − L2). When N ≥ 3, we recall that

since (uν, θν) is a weak solution to the viscous Boussinesq Eq. (3.1), then one can easily have that for
∀ 0 < T < +∞ and for all ν > 0,

uν ∈ L∞
(
[0,T ]; L2(TN)

)
, θν ∈ L∞

(
[0,T ], L2(TN)

)
.

Note that we can not use the L2([0,T ]; H1)-bound for (uν, θν), because we will take limit as ν goes to
0. however, it follows from (3.2) and (3.3) that

√
ν∇uν ∈ L2([0,T ], L2(TN)

)
,
√
ν∇θν ∈ L2([0,T ], L2(TN)

)
.

Furthermore, noticing that ∂tuν = −P(∇ · (uν ⊗ uν)) + P(ν∆uν) + P(θνeN), thus ∂tuν is bounded in
L2([0,T ]; H−1(TN)

)
+ L∞

(
[0,T ]; W−(1+λ),1(TN)

)
+ L∞

(
[0,T ]; L2(TN)

)
for all λ > 0. In a similar way, it

follows from ∂tθν = −∇ · (uνθν) + ν∆θν that ∂tθν is also bounded in
L2([0,T ]; H−1(TN)

)
+ L∞

(
[0,T ]; W−(1+λ),1(TN)

)
for all λ > 0. It is also possible to show (see [ [12]
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Appendix C]) that (uν, θν) converges to (u, θ) ∈ C([0,T ]; w − L2) weakly in L2 uniformly in t ∈ [0,T ]
for all T ∈ (0,∞). And div u = 0 in D′([0,T ] × TN), u|t=0 = u0, θ|t=0 = θ0. Then by the weak lower
semi-continuity of the norms and letting ν→ 0+ in (3.11), we obtain that, for every 0 < t < T ,

‖(u − v, θ − ρ)(t, ·)‖2L2 ≤ exp
[ ∫ t

0
(1 + 2‖d−‖∞ + ‖∇ρ‖L∞)ds

]
‖(u0 − v0, θ0 − ρ0)‖2L2

+

∫ t

0

[ ∫
TN

A(v, ρ) ·
(

u − v
θ − ρ

)
dx

]
(s) exp

[ ∫ t

s
(1 + 2‖d−‖∞ + ‖∇ρ‖L∞)dσ

]
ds.

The Theorem 3.1 is then proved. �
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10. C. De Lellis, L. Székelyhidi Jr, Dissipative continuous Euler flows, Invent. Math., 193 (2013),
377–407.

AIMS Mathematics Volume 5, Issue 4, 2869–2876.



2876
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