Editorial

Special Issue: Peridynamics and its applications

  • Received: 27 June 2024 Revised: 28 June 2024 Accepted: 28 June 2024 Published: 01 July 2024
  • Citation: Erkan Oterkus, Timon Rabczuk, Selda Oterkus. Special Issue: Peridynamics and its applications[J]. AIMS Materials Science, 2024, 11(3): 602-604. doi: 10.3934/matersci.2024030

    Related Papers:



  • 加载中


    [1] Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48: 175–209. https://doi.org/10.1016/S0022-5096(99)00029-0 doi: 10.1016/S0022-5096(99)00029-0
    [2] Madenci E, Oterkus E (2013) Peridynamic Theory and its Applications, New York: Springer. https://doi.org/10.1007/978-1-4614-8465-3
    [3] Liu X, He X, Lu C, et al. (2021) Peridynamic modeling at nano-scale, In: Oterkus E, Oterkus S, Madenci E, Peridynamic Modeling, Numerical Techniques, and Applications, Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-820069-8.00012-3
    [4] Liu X, He X, Wang J, et al. (2018) An ordinary state-based peridynamic model for the fracture of zigzag graphene sheets. Proc R Soc A 474: 20180019. https://doi.org/10.1098/rspa.2018.0019 doi: 10.1098/rspa.2018.0019
    [5] Wang B, Oterkus S, Oterkus E (2021) Thermal diffusion analysis by using dual horizon peridynamics. J Therm Stresses 44: 51–74. https://doi.org/10.1080/01495739.2020.1843378 doi: 10.1080/01495739.2020.1843378
    [6] Diyaroglu C, Oterkus S, Madenci E, et al. (2017) Peridynamic wetness approach for moisture concentration analysis in electronic packages. Microelectron Reliab 70: 103–111. https://doi.org/10.1016/j.microrel.2017.01.008 doi: 10.1016/j.microrel.2017.01.008
    [7] Oterkus S, Madenci E, Oterkus E (2017) Fully coupled poroelastic formulation for fluid-filled fractures. Eng Geol 225: 19–28. https://doi.org/10.1016/j.enggeo.2017.02.001 doi: 10.1016/j.enggeo.2017.02.001
    [8] Nguyen CT, Oterkus S, Oterkus E, et al. (2021) Modelling of Eulerian incompressible fluid flows by using peridynamic differential operator. Ocean Eng 239: 109815. https://doi.org/10.1016/j.oceaneng.2021.109815 doi: 10.1016/j.oceaneng.2021.109815
    [9] Oterkus E, Madenci E, Nemeth MP (2007) Stress analysis of composite cylindrical shells with an elliptical cutout. J Mech Mater Struct 2: 695–727. http://dx.doi.org/10.2140/jomms.2007.2.695 doi: 10.2140/jomms.2007.2.695
    [10] Ren H, Zhuang X, Cai Y, et al. (2016) Dual-horizon peridynamics. Int J Numer Meth Engng 108: 1451–1476. https://doi.org/10.1002/nme.5257 doi: 10.1002/nme.5257
    [11] Wang B, Oterkus S, Oterkus E (2023) Derivation of dual horizon state-based peridynamics formulation based on Euler-Lagrange equation. Continuum Mech Therm 35: 841–861. https://doi.org/10.1007/s00161-020-00915-y doi: 10.1007/s00161-020-00915-y
    [12] Yang Z, Oterkus E, Oterkus S, et al. (2023) Double horizon peridynamics. Math Mech Solids 28: 2531–2549. https://doi.org/10.1016/j.cma.2016.12.031 doi: 10.1016/j.cma.2016.12.031
    [13] Ren H, Zhuang X, Oterkus E, et al. (2023) Nonlocal strong forms of thin plate, gradient elasticity, magneto-electro-elasticity and phase field fracture by nonlocal operator method. Eng Comput 39: 23–44. https://doi.org/10.1007/s00366-021-01502-8 doi: 10.1007/s00366-021-01502-8
    [14] Madenci E, Barut A, Dorduncu M (2019) Peridynamic Differential Operator for Numerical Analysis, Cham: Springer. https://doi.org/10.1007/978-3-030-02647-9
    [15] Lazopoulos KA, Sideridis E, Lazopoulos AK (2022) On Λ-fractional peridynamic mechanics. AIMS Mater Sci 9: 684–701. https://doi.org/10.3934/matersci.2022042 doi: 10.3934/matersci.2022042
    [16] Lazopoulos KA, Lazopoulos AK (2023) Beam bending and Λ-fractional analysis. AIMS Mater Sci 10: 604–617. https://doi.org/10.3934/matersci.2023034 doi: 10.3934/matersci.2023034
    [17] Friebertshä user KF, Wieners C, Weinberg K (2022) Dynamic fracture with continuum-kinematics-based peridynamics. AIMS Mater Sci 9: 791–807. https://doi.org/10.3934/matersci.2022049 doi: 10.3934/matersci.2022049
    [18] Altenbach H, Larin O, Naumenko K, et al. (2022) Elastic plate under low velocity impact: Classical continuum mechanics vs peridynamics analysis. AIMS Mater Sci 9: 702–718. https://doi.org/10.3934/matersci.2022043 doi: 10.3934/matersci.2022043
    [19] Oterkus E, Oterkus S (2024) Recent advances is peridynamic theory: A review. AIMS Mater Sci 11: 515–546. https://doi.org/10.3934/matersci.2024026 doi: 10.3934/matersci.2024026
    [20] Ramadan A (2023) Shear crack control for a reinforced concrete T-beam using coupled stochastic-multi-objective optimization methods. AIMS Mater Sci 10: 1077–1089. https://doi.org/10.3934/matersci.2023057 doi: 10.3934/matersci.2023057
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(89) PDF downloads(16) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog