Research article

Enhancing Co3O4 nanoparticles: Investigating the impact of nickel doping and high-temperature annealing on NiCo2O4/CoO heterostructures

  • Received: 22 July 2023 Revised: 05 September 2023 Accepted: 15 September 2023 Published: 04 December 2023
  • In this study, we investigated the phase transition of cobalt spinel (Co3O4) nanoparticles into Co3-xNixO4/CoO heterostructures by introducing varying amounts of nickel (x = 0.0–0.16) and subjecting the particles to high annealing temperatures of 1000 ℃. X-ray diffraction (XRD) analysis confirmed the Co3-xNixO4CoO structure for all samples. Transmission electron microscopy (TEM) provided further insights into the phase or heterostructure of the samples after annealing, revealing the arrangement of the two phases. Fourier-transform infrared spectroscopy measurements demonstrated a band shift around 537 cm-1 with increasing Ni content, while ultraviolet-visible (UV-Vis) measurements indicated the energy band (Eg). Significant morphological changes were observed in scanning electron microscope (SEM) measurements at 0.16 Ni, displaying irregular agglomerates. Our findings suggest that introducing Ni into the Co3O4 structure and increasing the annealing temperature to 1000 ℃ can lead to the formation of a heterostructured system. Furthermore, our study's significance is highlighted by the streamlined synthesis of NiCo2O4/CoO using the sol-gel method followed by calcination. This departure from complex techniques provides an efficient route to acquiring the NiCo2O4/CoO system, a promissory material for advancing supercapacitor research.

    Citation: Leydi J. Cardenas F., Josep Ma. Chimenos, Luis C. Moreno A., Elaine C. Paris, Miryam R. Joya. Enhancing Co3O4 nanoparticles: Investigating the impact of nickel doping and high-temperature annealing on NiCo2O4/CoO heterostructures[J]. AIMS Materials Science, 2023, 10(6): 1090-1104. doi: 10.3934/matersci.2023058

    Related Papers:

  • In this study, we investigated the phase transition of cobalt spinel (Co3O4) nanoparticles into Co3-xNixO4/CoO heterostructures by introducing varying amounts of nickel (x = 0.0–0.16) and subjecting the particles to high annealing temperatures of 1000 ℃. X-ray diffraction (XRD) analysis confirmed the Co3-xNixO4CoO structure for all samples. Transmission electron microscopy (TEM) provided further insights into the phase or heterostructure of the samples after annealing, revealing the arrangement of the two phases. Fourier-transform infrared spectroscopy measurements demonstrated a band shift around 537 cm-1 with increasing Ni content, while ultraviolet-visible (UV-Vis) measurements indicated the energy band (Eg). Significant morphological changes were observed in scanning electron microscope (SEM) measurements at 0.16 Ni, displaying irregular agglomerates. Our findings suggest that introducing Ni into the Co3O4 structure and increasing the annealing temperature to 1000 ℃ can lead to the formation of a heterostructured system. Furthermore, our study's significance is highlighted by the streamlined synthesis of NiCo2O4/CoO using the sol-gel method followed by calcination. This departure from complex techniques provides an efficient route to acquiring the NiCo2O4/CoO system, a promissory material for advancing supercapacitor research.



    加载中


    [1] Wu Z, Zhu Y, Ji X (2014) NiCo2O4-based materials for electrochemical supercapacitors. J Mater Chem A 2: 14759–14772. https://doi.org/10.1039/C4TA02390K doi: 10.1039/C4TA02390K
    [2] Cheng P, Dang F, Wang Y, et al. (2021) Gas sensor towards n-butanol at low temperature detection: Hierarchical flower-like Ni-doped Co3O4 based on solvent-dependent synthesis. Sens Actuators B Chem 328: 129028. https://doi.org/10.1016/j.snb.2020.129028 doi: 10.1016/j.snb.2020.129028
    [3] Shepit M, Paidi VK, Roberts CA, et al. (2021) Unusual magnetism in CuxCo3xO nanoparticles. Phys Rev B 103: 024448. https://doi.org/10.1103/PhysRevB.103.024448 doi: 10.1103/PhysRevB.103.024448
    [4] Wu B, Shan C, Zhang X, et al. (2021) CeO2/Co3O4 porous nanosheet prepared using rose petal as biotemplate for photo-catalytic degradation of organic contaminants. Appl Surf Sci 543: 148677. https://doi.org/10.1016/j.apsusc.2020.148677 doi: 10.1016/j.apsusc.2020.148677
    [5] Li QP, Liu FQ, Mu XL, et al. (2021) Co3O4/CdS energy-storing nanocomposite: A promising photoanode for photoelectrochemical cathodic protection in the dark. J Alloys Compd 870: 159340. https://doi.org/10.1016/j.jallcom.2021.159340 doi: 10.1016/j.jallcom.2021.159340
    [6] V-Niño ED, Díaz Lantada A, Lonne Q, et al. (2018) Manufacturing of polymeric substrates with copper nanofillers through laser stereolithography technique. Polymers 10: 1325. https://doi.org/10.3390/polym10121325 doi: 10.3390/polym10121325
    [7] Keerthana SP, Yuvakkumar R, Senthil Kumar P, et al. (2021) Influence of tin (Sn) doping on Co3O4 for enhanced photocatalytic dye degradation. Chemosphere 277: 130325. https://doi.org/10.1016/j.chemosphere.2021.130325 doi: 10.1016/j.chemosphere.2021.130325
    [8] Abdallah AM, Awad R (2021) Sm and Er partial alternatives of Co in Co3O4 nanoparticles: Probing the physical properties. Physica B 608: 412898. https://doi.org/10.1016/j.physb.2021.412898 doi: 10.1016/j.physb.2021.412898
    [9] Li Q, Zhang Q, Zhou Z, et al. (2021) Boosting Zn-ion storage capability of self-standing Zn-doped Co3O4 nanowire array as advanced cathodes for high-performance wearable aqueous rechargeable Co//Zn batteries. Nano Res 14: 91–99. https://doi.org/10.1007/s12274-020-3046-8 doi: 10.1007/s12274-020-3046-8
    [10] Bao W, Li Y, Zhang J, et al. (2023) Interface engineering of the NiCo2O4@MoS2/TM heterostructure to realize the efficient alkaline oxygen evolution reaction. Int J Hydrogen Energy 48: 12176–12184. https://doi.org/10.1016/j.ijhydene.2022.12.184 doi: 10.1016/j.ijhydene.2022.12.184
    [11] Zhou X, Li Y, Zhao J, et al. (2023) Tailoring the electronic structure of NiMoO4 nanowires with NiCo2O4 nanosheets by constructing heterostructure interfaces for improving oxygen evolution reaction. Ionics 29: 1983–1990. https://doi.org/10.1007/s11581-023-04965-5 doi: 10.1007/s11581-023-04965-5
    [12] Bao W, Xiao L, Zhang J, et al. (2021) Electronic and structural engineering of NiCo2O4/Ti electrocatalysts for efficient oxygen evolution reaction. Int J Hydrogen Energy 46: 10259–10267. https://doi.org/10.1016/j.ijhydene.2020.12.126 doi: 10.1016/j.ijhydene.2020.12.126
    [13] Wu X, Zhou X, Hu L, et al. (2021) Porous NiCo2O4–FeCo2O4 nanowire arrays as advanced electrodes for high-performance flexible asymmetric supercapacitors. Energ Fuel 35: 12680–12687. https://doi.org/10.1021/acs.energyfuels.1c01517 doi: 10.1021/acs.energyfuels.1c01517
    [14] Rashti A, Lu X, Dobson A, et al. (2021) Tuning MOF-derived Co3O4/NiCo2O4 nanostructures for high-performance energy storage. ACS Appl Energy Mater 4: 1537–1547. https://doi.org/10.1021/acsaem.0c02736 doi: 10.1021/acsaem.0c02736
    [15] Chang Q, Liang H, Shi B, et al. (2021) Ethylenediamine-assisted hydrothermal synthesis of NiCo2O4 absorber with controlled morphology and excellent absorbing performance. J Colloid Interf Sci 588: 336–345. https://doi.org/10.1016/j.jcis.2020.12.099 doi: 10.1016/j.jcis.2020.12.099
    [16] Chen C, Su H, Lu L, et al. (2021) Interfacing spinel NiCo2O4 and NiCo alloy derived N-doped carbon nanotubes for enhanced oxygen electrocatalysis. Chem Eng J 408: 127814. https://doi.org/10.1016/j.cej.2020.127814 doi: 10.1016/j.cej.2020.127814
    [17] Cardenas-Flechas LJ, Barba-Ortega J, Joya MR (2020) Copper and iron oxide films deposited in titanium nanotubes. Rev UIS Ing 19: 171–178. https://doi.org/10.18273/revuin.v19n1-2020016 doi: 10.18273/revuin.v19n1-2020016
    [18] Sivakumar P, Vikraman D, Raj CJ, et al. (2021) Hierarchical NiCo/NiO/NiCo2O4 composite formation by solvothermal reaction as a potential electrode material for hydrogen evolutions and asymmetric supercapacitors. Int J Energy Res 45: 19947–19961. https://doi.org/10.1002/er.7065 doi: 10.1002/er.7065
    [19] Wu Z, Zhu Y, Ji X (2019) Study on charge storage mechanism in working electrodes fabricated by sol-gel derived spinel NiMn2O4 nanoparticles for supercapacitor application. Appl Surf Sci 463: 513–525. https://doi.org/10.1016/j.apsusc.2018.08.259 doi: 10.1016/j.apsusc.2018.08.259
    [20] Srinivasa N, Shreenivasa L, Adarakatti PS, et al. (2019) In situ addition of graphitic carbon into a NiCo2O4/CoO composite: Enhanced catalysis toward the oxygen evolution reaction. RSC Adv 9: 24995–25002. http://dx.doi.org/10.1039/C9RA05195C doi: 10.1039/C9RA05195C
    [21] Li Y, Han X, Yi T, et al. (2019) Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes. J Energy Chem 31: 54–78. https://doi.org/10.1016/j.jechem.2018.05.010 doi: 10.1016/j.jechem.2018.05.010
    [22] Manalu A, Tarigan K, Humaidi S, et al. (2022) Synthesis, microstructure and electrical properties of NiCo2O4/rGO composites as pseudocapacitive electrode for supercapacitors. Int J Electrochem Sci 17: 22036. https://doi.org/10.20964/2022.03.11 doi: 10.20964/2022.03.11
    [23] Peres APS, Lima AC, Barros BS, et al. (2012) Synthesis and characterization of NiCCo2O4 spinel using gelatin as an organic precursor. Mater Lett 89: 36–39. https://doi.org/10.1016/j.matlet.2012.08.044 doi: 10.1016/j.matlet.2012.08.044
    [24] Zhao N, Yang F, Zhao C, et al. (2021) Construction of pH-dependent nanozymes with oxygen vacancies as the high-efficient reactive oxygen species scavenger for oral-administrated antiinflammatory therapy. Adv Healthc Mater 10: e2101618. https://doi.org/10.1002/adhm.202101618 doi: 10.1002/adhm.202101618
    [25] Cardenas-Flechas LJ, Freire PTC, Paris EC, et al. (2021) Temperature-induced structural phase transformation in samples of Co3O4 and Co3-xNixO4 for CoO. Materialia 18: 101155. https://doi.org/10.1016/j.mtla.2021.101155 doi: 10.1016/j.mtla.2021.101155
    [26] Marco JF, Gancedo JR, Gracia M, et al. (2001) Cation distribution and magnetic structure of the ferrimagnetic spinel NiCo2O4. J Mater Chem 11: 3087–3093. https://doi.org/10.1039/B103135J doi: 10.1039/B103135J
    [27] Wang P, Jia C, Huang Y, et al. (2021) Van der waals heterostructures by design: From 1D and 2D to 3D. Matter 4: 552–581. https://doi.org/10.1016/j.matt.2020.12.015 doi: 10.1016/j.matt.2020.12.015
    [28] Liu Y, Fang Y, Yang D, et al. (2022) Recent progress of heterostructures based on two dimensional materials and wide bandgap semiconductors. J Phys: Condens Matter 34: 183001. https://doi.org/10.1088/1361-648x/ac5310 doi: 10.1088/1361-648x/ac5310
    [29] Lakehal A, Bedhiaf B, Bouaza A, et al. (2018) Structural optical and electrical properties of Ni-doped Co3O4 prepared via sol-gel technique. Mat Res 21: 1–7. https://doi.org/10.1590/1980-5373-MR-2017-0545 doi: 10.1590/1980-5373-MR-2017-0545
    [30] Cardenas-Flechas LJ, Xuriguera Martín E, Padilla Sanchez JA, et al. (2021) Experimental comparison of the effect of temperature on the vibrational and morphological properties of NixCo3-xO4 nanostructures. Mater Lett 303: 130477. https://doi.org/10.1016/j.matlet.2021.130477 doi: 10.1016/j.matlet.2021.130477
    [31] Shen G, Chen PC, Ryu K, et al. (2009) Devices and chemical sensing applications of metal oxide nanowires. J Mater Chem 19: 828–839. https://doi.org/10.1039/B816543B doi: 10.1039/B816543B
    [32] Thota S, Kumar A, Kumar J (2009) Optical electrical and magnetic properties of Co3O4 nano crystallites obtained by thermal decomposition of sol-gel derived oxalates. Mater Sci Eng B 164: 30–37. https://doi.org/10.1016/j.mseb.2009.06.002 doi: 10.1016/j.mseb.2009.06.002
    [33] Liu MC, Kong LB, Lu C, et al. (2012) A sol–gel process for fabrication of NiO/NiCo2O4/Co3O4 composite with improved electrochemical behavior for electrochemical capacitors. ACS Appl Mater Interfaces 4: 4631–4636. https://doi.org/10.1021/am301010u doi: 10.1021/am301010u
    [34] Cardenas-Flechas LJ, Raba Paes AM, Joya MR (2020) Synthesis and evaluation of nickel doped Co3O4 produced through hydrothermal technique. DYNA 87: 184–191. https://doi.org/10.15446/dyna.v87n213.84410 doi: 10.15446/dyna.v87n213.84410
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(925) PDF downloads(72) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog