This paper presents the results of the experimental studies of the helium plasma interaction with a surface carbide layer of tungsten. The experiments were carried out on a plasma beam installation (PBI) at a constant energy of incoming ions of 2 keV and at a surface temperature of the tungsten carbide layer of ~905 and ~1750 ℃. The local parameters (Te, n0) of the helium plasma were evaluated using the probe method and spectrometric analysis of the plasma composition. The helium plasma irradiated two types of the carbide layer on the tungsten surface, WC and W2C. The mechanisms of changing the tungsten surface morphology in the result of the plasma irradiation have been described. The study of the surface structure of the tungsten samples with a carbide layer of two types (WC, W2C) after the exposure to the helium plasma has revealed two different types of the formation of helium bubbles and changes in the surface morphology. The physical mechanism of the formation of helium bubbles consists in the capture of helium atoms by the thermal vacancies generated at high temperature by the material surface. However, with a significant increase in temperature to 1750 ℃, the formation of the bubbles was no longer observed and the sample surface had a developed coral-like structure with crystallographically oriented grains.
Citation: Mazhyn Skakov, Arman Miniyazov, Victor Baklanov, Alexander Gradoboev, Timur Tulenbergenov, Igor Sokolov, Yernat Kozhakhmetov, Gainiya Zhanbolatova, Ivan Kukushkin. Influence of helium plasma on the structural state of the surface carbide layer of tungsten[J]. AIMS Materials Science, 2023, 10(4): 725-740. doi: 10.3934/matersci.2023040
This paper presents the results of the experimental studies of the helium plasma interaction with a surface carbide layer of tungsten. The experiments were carried out on a plasma beam installation (PBI) at a constant energy of incoming ions of 2 keV and at a surface temperature of the tungsten carbide layer of ~905 and ~1750 ℃. The local parameters (Te, n0) of the helium plasma were evaluated using the probe method and spectrometric analysis of the plasma composition. The helium plasma irradiated two types of the carbide layer on the tungsten surface, WC and W2C. The mechanisms of changing the tungsten surface morphology in the result of the plasma irradiation have been described. The study of the surface structure of the tungsten samples with a carbide layer of two types (WC, W2C) after the exposure to the helium plasma has revealed two different types of the formation of helium bubbles and changes in the surface morphology. The physical mechanism of the formation of helium bubbles consists in the capture of helium atoms by the thermal vacancies generated at high temperature by the material surface. However, with a significant increase in temperature to 1750 ℃, the formation of the bubbles was no longer observed and the sample surface had a developed coral-like structure with crystallographically oriented grains.
[1] | Pintsuk G, Hasegawa A (2020) Tungsten as a plasma-facing material, In: Konings RJM, Stoller RE, Comprehensive Nuclear Material, 2 Eds., Oxford: Elsevier. |
[2] | Rieth M, Doerner R, Hasegawa A, et al. (2019) Behavior of tungsten under irradiation and plasma interaction. J Nucl Mater 519: 334–368. https://doi.org/10.1016/j.jnucmat.2019.03.035 doi: 10.1016/j.jnucmat.2019.03.035 |
[3] | Bolt H, Barabash V, Federici G, et al. (2002) Plasma facing and high heat flux materials-needs for ITER and beyond. J Nucl Mater 307–311: 43–52. https://doi.org/10.1016/S0022-3115(02)01175-3 doi: 10.1016/S0022-3115(02)01175-3 |
[4] | Suchandrima D (2019) Recent advances in characterising irradiation damage in tungsten for fusion power. SN App Sci 1: 1614. https://doi.org/10.1007/s42452-019-1591-0 doi: 10.1007/s42452-019-1591-0 |
[5] | Hammond KD (2017) Helium, hydrogen, and fuzz in plasma-facing materials. Mater Res Express 4: 104002. https://doi.org/10.1088/2053-1591/aa8c22 doi: 10.1088/2053-1591/aa8c22 |
[6] | Henriksson K, Nordlund K, Krasheninnikov A, et al. (2017) The depths of hydrogen and helium bubbles in tungsten: A comparison. Fusion Sci Technol 5: 43–57. https://doi.org/10.13182/FST06-A1219 doi: 10.13182/FST06-A1219 |
[7] | Tsitrone E (2022) Investigation of plasma wall interactions between tungsten plasma facing components and helium plasmas in the WEST tokamak. Nucl Fusion 62: 076028. https://doi.org/10.1088/1741-4326/ac2ef3 doi: 10.1088/1741-4326/ac2ef3 |
[8] | Kajita S, Takamura S, Ohno N (2009) Prompt ignition of a unipolar arc on helium irradiated tungsten. Nucl Fusion 49: 032002. https://doi.org/10.1088/0029-5515/49/3/032002 doi: 10.1088/0029-5515/49/3/032002 |
[9] | Valles G, Martin-Bragado I, Nordlund, K, et al. (2017) Temperature dependence of underdense nanostructure formation in tungsten under helium irradiation. J Nucl Mater 490: 108–114. https://doi.org/10.1016/j.jnucmat.2017.04.021 doi: 10.1016/j.jnucmat.2017.04.021 |
[10] | Skakov М, Kurbanbekov S, Baklanov V, et al. (2016) Structure investigations of siliconized graphite obtained during elaboration of sintering process technology. Int J ChemTech Res 9: 447–452. Available from: https://sphinxsai.com/2016/ch_vol9_no8/2/(447-452)V9N8CT.pdf. |
[11] | Kajita S, Sakaguchi W, Ohno N, et al. (2009) Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions. Nucl Fusion 49: 095005. https://doi.org/10.1088/0029-5515/49/9/095005. doi: 10.1088/0029-5515/49/9/095005 |
[12] | Takamura S, Ohon N, Nishijima D, et al. (2006) Formation of nanostructured tungsten with arborescent shape due to helium plasma irradiation. Plasma Fusion Res 1: 051. https://doi.org/10.1585/pfr.1.051 doi: 10.1585/pfr.1.051 |
[13] | Tulenbergenov TR, Skakov MK, Sokolov IA, et al. (2019) Formation of "fuzz" on the pre-nitrided tungsten surface. Phys Atom Nuclei 82: 1454–1459. https://doi.org/10.1134/S1063778819120299 doi: 10.1134/S1063778819120299 |
[14] | Ueda Y, Peng HY, Lee HT, et al. (2013) Helium effects on tungsten surface morphology and deuterium retention. J Nucl Mater 44: S267–S272. https://doi.org/10.1016/j.jnucmat.2012.10.023 doi: 10.1016/j.jnucmat.2012.10.023 |
[15] | Takamura S (2014) Initial stage of fiber-form nanostructure growth on refractory metal surfaces with helium plasma irradiation. Plasma Fusion Res 9: 1302007. https://doi.org/10.1585/pfr.9.1302007 doi: 10.1585/pfr.9.1302007 |
[16] | Nishijima D, Ye MY, Ohno N, et al. (2003) Incident ion energy dependence of bubble formation on tungsten surface with low energy and high flux helium plasma irradiation. J Nucl Mater 313–316: 97–101. https://doi.org/10.1016/S0022-3115(02)01368-5 doi: 10.1016/S0022-3115(02)01368-5 |
[17] | Nishijima D, Ye MY, Ohno N, et al. (2004) Formation mechanism of bubbles and holes on tungsten surface with low-energy and high-flux helium plasma irradiation in NAGDIS-Ⅱ. J Nucl Mater 329–333: 1029–1033. https://doi.org/10.1016/j.jnucmat.2004.04.129 doi: 10.1016/j.jnucmat.2004.04.129 |
[18] | Takamura S, Ohno N, Nishijima D, et al. (2006) Formation of nanostructured tungsten with arborescent shape due to helium plasma irradiation. Plasma Fusion Res 1: 051. https://doi.org/10.1585/pfr.1.051 doi: 10.1585/pfr.1.051 |
[19] | Baldwin MJ, Doerner RP (2008) Helium induced nanoscopic morphology on tungsten under fusion relevant plasma conditions. Nucl Fusion 48: 035001. https://doi.org/10.1088/0029-5515/48/3/035001 doi: 10.1088/0029-5515/48/3/035001 |
[20] | Baldwin MJ, Doerner RP (2010) Formation of helium induced nanostructure "fuzz" on various tungsten grades. J Nucl Mater 404: 165–173. https://doi.org/10.1016/j.jnucmat.2010.06.034 doi: 10.1016/j.jnucmat.2010.06.034 |
[21] | Temmerman GD, Bystrov K, Doerner RP, et al. (2013) Helium effects on tungsten under fusion-relevant plasma loading conditions. J Nucl Mater 438: S78–S83. https://doi.org/10.1016/j.jnucmat.2013.01.012 doi: 10.1016/j.jnucmat.2013.01.012 |
[22] | Wright GM, Brunner D, Baldwin MJ, et al. (2003) Tungsten nanotendril growth in the Alcator C-Mod divertor. Nucl Fusion 52: 042003. https://doi.org/10.1088/0029-5515/52/4/042003 doi: 10.1088/0029-5515/52/4/042003 |
[23] | Miyamoto M, Mikami S, Nagashima H, et al. (2015) Systematic investigation of the formation behavior of helium bubbles in tungsten. J Nucl Mater 463: 333–336. https://doi.org/10.1016/j.jnucmat.2014.10.098 doi: 10.1016/j.jnucmat.2014.10.098 |
[24] | Tazhibayeva IL, Azizov EA, Krylov VA, et al. (2005) KTM experimental complex project status. Fusion Sci Technol 47: 746–750. https://doi.org/10.13182/FST05-A77 doi: 10.13182/FST05-A77 |
[25] | Zhou HB, Ou X, Zhang Y, et al. (2013) Effect of carbon on helium trapping in tungsten: A first-principles investigation. J Nucl Mater 440: 338–343. https://doi.org/10.1016/j.jnucmat.2013.05.070 doi: 10.1016/j.jnucmat.2013.05.070 |
[26] | Zhanbolatova GK, Baklanov VV, Skakov MK, et al. (2021) Influence of temperature on tungsten carbide formation in a beam plasma discharge. J Phys-Conf Ser 2064: 012055. https://doi.org/10.1088/1742-6596/2064/1/012055 doi: 10.1088/1742-6596/2064/1/012055 |
[27] | Ueda Y, Shimada T, Nishikawa M (2004) Impact of carbon impurities in hydrogen plasmas on tungsten blistering. Nucl Fusion 44: 62–67. https://doi.org/10.1088/0029-5515/44/1/007 doi: 10.1088/0029-5515/44/1/007 |
[28] | Tulenbergenov TR, Sokolov IA, Miniyazov AZ, et al. (2019) Review on linear accelerators. NNC RK Bulletin 1: 59–67 (in Russian). https://doi.org/10.52676/1729-7885-2019-4-59-67 doi: 10.52676/1729-7885-2019-4-59-67 |
[29] | Sokolov IA, Skakov MK, Miniyazov AZ, et al. (2021) Interaction of plasma with beryllium. J Phys-Conf Ser 2064: 012070. https://doi.org/10.1088/1742-6596/2064/1/012070 doi: 10.1088/1742-6596/2064/1/012070 |
[30] | Skakov M, Batyrbekov E, Sokolov I, et al. (2022) Influence of hydrogen plasma on the surface structure of beryllium. Materials 15: 6340. https://doi.org/10.3390/ma15186340 doi: 10.3390/ma15186340 |
[31] | Tazhibayeva I, Ponkratov Y, Lyublinsky I, et al. (2022) Study of liquid tin-lithium alloy interaction with structural materials of fusion reactor at high temperatures. Nucl Mater Energy 30: 101152. https://doi.org/10.1016/j.nme.2022.101152 doi: 10.1016/j.nme.2022.101152 |
[32] | Kozhakhmetov YА, Skakov МK, Kurbanbekov SR, et al. (2021) Powder composition structurization of the Ti-25Al-25Nb (at.%) system upon mechanical activation and subsequent spark plasma sintering. Eurasian Chem-Technol J 23: 37–44. https://doi.org/10.18321/ectj1032 doi: 10.18321/ectj1032 |
[33] | Sokolov IA, Skakov MK, Zuev VA, et al. (2018) Study of the interaction of plasma with beryllium that is a candidate material for the first wall of a fusion reactor. Tech Phys 63: 506–510. https://doi.org/10.1134/S1063784218040230 doi: 10.1134/S1063784218040230 |
[34] | Skakov M, Yerbolatova G, Kantai N, et al. (2014) Investigation of the influence of electrolytic-plasma processing on structural-phase state and mechanical properties of the 40CrNiAl alloy. Adv Mat Res 1044–1045: 67–70. https://doi.org/10.4028/www.scientific.net/AMR.1044-1045.67 doi: 10.4028/www.scientific.net/AMR.1044-1045.67 |
[35] | Kantay N, Rakhadilov B, Kurbanbekov S, et al. (2021) Influence of detonation-spraying parameters on the phase composition and tribological properties of Al2O3 coatings. Coatings 11: 793. https://doi.org/10.3390/coatings11070793 doi: 10.3390/coatings11070793 |
[36] | Ponkratov YV, Samarkhanov KK, Baklanov VV, et al. (2023) Investigation of the interaction of liquid tin-lithium alloy with austenitic stainless steel at high temperatures. Fusion Eng Des 191: 113560. https://doi.org/10.1016/j.fusengdes.2023.113560 doi: 10.1016/j.fusengdes.2023.113560 |
[37] | Kenzhin EA, Kenzhina IE, Kulsartov TV, et al. (2023) Study of interaction of hydrogen isotopes with titanium beryllide (Be12Ti). Fusion Eng Des 191: 113738. https://doi.org/10.1016/j.fusengdes.2023.113738 doi: 10.1016/j.fusengdes.2023.113738 |
[38] | Tulenbergenov TR, Miniyazov AZ, Sokolov IA, et al. (2019) The role of simulation bench with plasma-beam installation in studies of plasma-surface interaction. NNC RK Bulletin 1: 51–58 (in Russian). https://doi.org/10.52676/1729-7885-2019-4-51-58 doi: 10.52676/1729-7885-2019-4-51-58 |
[39] | Krasheninnikov SI (2001) On scrape off layer plasma transport. Phys Lett A 283: 368–370. https://doi.org/10.1016/S0375-9601(01)00252-3 doi: 10.1016/S0375-9601(01)00252-3 |
[40] | D'Ippolito DA, Myra J, Krasheninnikov S, et al. (2004) Blob transport in the tokamak scrape‐off‐layer. Contrib Plasm Phys 44: 205–216. https://doi.org/10.1002/ctpp.200410030 doi: 10.1002/ctpp.200410030 |
[41] | Loarte A, Lipschultz B, Kukushkin AS, et al. (2007) Chapter 4: Power and particle control. Nucl Fusion 47: S203. https://doi.org/10.1088/0029-5515/47/6/S04 doi: 10.1088/0029-5515/47/6/S04 |
[42] | Krasheninnikov S, D'Ippolito DA, Myra J, et al. (2008) Recent theoretical progress in understanding coherent structures in edge and SOL turbulence. J Plasma Phys 74: 679–717. https://doi.org/10.1017/S0022377807006940 doi: 10.1017/S0022377807006940 |
[43] | ASTM International (2021) Standard test methods for determining average grain size. ASTM E112-13. https://doi.org/10.1520/E0112-13R21 doi: 10.1520/E0112-13R21 |
[44] | Ivanov VI (2016) Vacuum Technology: Textbook, St. Petersburg: ITMO University (in Russian). |
[45] | Skakov MK, Miniyazov AZ, Baklanov VV, et al. (2022) Method of high temperature annealing of metals and alloys by electron beam exposure in vacuum and gas medium. Patent No. 35911. Available from: https://gosreestr.kazpatent.kz/Invention/DownLoadFilePdf?patentId = 346518 & lang = ru. |
[46] | Skakov MK, Sokolov IA, Batyrbekov EG, et al. (2020) Method for obtaining tungsten carbides in a plasma-beam discharge. Patent No. 34269. Available from: https://gosreestr.kazpatent.kz/Invention/DownLoadFilePdf?patentId = 304053 & lang = ru. |
[47] | Skakov MK, Baklanov VV, Zhanbolatova GK, et al. (2023) Research of the structural-phase state of tungsten surface layer cross-section after carbidization in a beam-plasma discharge usage electron microscopy methods. NNC RK Bulletin 2: 89–96. https://doi.org/10.52676/1729-7885-2023-2-89-96 doi: 10.52676/1729-7885-2023-2-89-96 |
[48] | Baklanov V, Zhanbolatova G, Skakov M, et al. (2022) Study of the temperature dependence of a carbidized layer formation on the tungsten surface under plasma irradiation. Mater Res Express 9: 016403. https://doi.org/10.1088/2053-1591/ac4626 doi: 10.1088/2053-1591/ac4626 |
[49] | Miniyazov AZ, Skakov MK, Tulenbergenov TR, et al. (2021) Investigation of tungsten surface carbidization under plasma irradiation. J Phys-Conf Ser 2064: 012053. https://doi.org/10.1088/1742-6596/2064/1/012053 doi: 10.1088/1742-6596/2064/1/012053 |
[50] | Skakov M, Miniyazov A, Batyrbekov E, et al. (2022) Influence of the carbidized tungsten surface on the processes of interaction with helium plasma. Materials 15: 7821. https://doi.org/10.3390/ma15217821 doi: 10.3390/ma15217821 |
[51] | Skakov M, Baklanov V, Zhanbolatova G, et al. (2023) The effect of recrystallization annealing on the tungsten surface carbidization in a beam plasma discharge. AIMS Mater Sci 10: 541–555. https://doi.org/10.3934/matersci.2023030 doi: 10.3934/matersci.2023030 |
[52] | Kozlov OV (1969) Electrical Probe in Plasma, Moscow: Atomizdat, 293 (in Russian). |
[53] | Skakov M, Zhanbolatova GK, Miniyazov АZ, et al. (2021) Impact of high-power heat load and W surface carbidization on its structural-phase composition and properties. Fusion Sci Technol 77: 57–66. https://doi.org/10.1080/15361055.2020.1843885 doi: 10.1080/15361055.2020.1843885 |
[54] | Ohno N, Hirakata Y, Yamagiwa M (2013) Influence of crystal orientation on damages of tungsten exposed to helium plasma. J Nucl Mater 438: S879–S882. https://doi.org/10.1016/j.jnucmat.2013.01.190 doi: 10.1016/j.jnucmat.2013.01.190 |
[55] | Kajita S, Sakaguchi W, Ohno N, et al. (2009) Formation process of tungsten nanostructure by the exposure to helium plasma under fusion relevant plasma conditions. Nucl Fusion 49: 9. https://doi.org/10.1088/0029-5515/49/9/095005 doi: 10.1088/0029-5515/49/9/095005 |
[56] | Cherepanov D, Arakcheev A, Arakcheev A, et al. (2021) In situ method for studying stresses in a pulse-heated tungsten plate based on measurements of surface curvature. Nucl Mater Energy 26: 100919. https://doi.org/10.1016/j.nme.2021.100919. doi: 10.1016/j.nme.2021.100919 |