Theory article Special Issues

Beam bending and Λ-fractional analysis

  • Received: 04 June 2023 Revised: 25 June 2023 Accepted: 27 June 2023 Published: 31 July 2023
  • Since the global stability criteria for Λ-fractional mechanics have been established, the Λ-fractional beam bending problem is discussed within that context. The co-existence of the phase phenomenon is revealed, allowing for elastic curves with non-smooth curvatures. The variational bending problem in the Λ-fractional space is considered. Global minimization of the total energy function of beam bending is necessarily applied. The variational Euler-Lagrange equation yields an equilibrium equation of the elastic curve, with the simultaneous possible corners being expressed by Weierstrass-Erdmann corner conditions.

    Citation: K.A. Lazopoulos, A.K. Lazopoulos. Beam bending and Λ-fractional analysis[J]. AIMS Materials Science, 2023, 10(4): 604-617. doi: 10.3934/matersci.2023034

    Related Papers:

  • Since the global stability criteria for Λ-fractional mechanics have been established, the Λ-fractional beam bending problem is discussed within that context. The co-existence of the phase phenomenon is revealed, allowing for elastic curves with non-smooth curvatures. The variational bending problem in the Λ-fractional space is considered. Global minimization of the total energy function of beam bending is necessarily applied. The variational Euler-Lagrange equation yields an equilibrium equation of the elastic curve, with the simultaneous possible corners being expressed by Weierstrass-Erdmann corner conditions.



    加载中


    [1] Bagley RL, Torvik PJ (1986) On the fractional calculus model of viscoelastic behavior. J Rheol 30: 133–155. https://doi.org/10.1122/1.549887 doi: 10.1122/1.549887
    [2] Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27: 201–210. https://doi.org/10.1122/1.549724 doi: 10.1122/1.549724
    [3] Atanackovic TM, Stankovic B (2002) Dynamics of a viscoelastic rod of fractional derivative type. ZAMM-Z Angew Math Me 82: 377–386. https://doi.org/10.1002/1521-4001(200206)82:6<377::AID-ZAMM377>3.0.CO;2-M doi: 10.1002/1521-4001(200206)82:6<377::AID-ZAMM377>3.0.CO;2-M
    [4] Mainardi F (2010) Fractional Calculus and Waves in Linear Viscoelasticity, London: Imperial College Press. https://doi.org/10.1142/p614
    [5] Lazopoulos KA (2006) Nonlocal continuum mechanics and fractional calculus. Mech Res Commun 33: 753–757. https://doi.org/10.1016/j.mechrescom.2006.05.001 doi: 10.1016/j.mechrescom.2006.05.001
    [6] Truesdell C, Noll W (2004) The Non-linear Field Theories of Mechanics, Heidelberg: Springer Berlin. https://doi.org/10.1007/978-3-662-10388-3
    [7] Eringen AC (2002) Nonlocal Continuum Field Theories, New York: Springer New York. https://doi.org/10.1007/b97697
    [8] Leibniz GW (1849) Letter to G.A. L'Hospital. Leibnitzens mathematishe Schriften 2: 301–302.
    [9] Liouville J (1832) Memoires sur le calcul des differentielles a indices quelconques. J Ec Polytech 13: 71–162.
    [10] Riemann B (2013) Versuch einer allgemeinen auffassung der integration and differentiation, In: Dedekind R, Weber HM, Bernard Riemann's Gesammelte Mathematische Werke und Wissenschaftlicher Nachlass, Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139568050
    [11] Samko SG, Kilbas AA, Marichev OI (1993) Fractional Integrals and Derivatives: Theory and Applications, Switzerland: Gordon and Breach Science Publishers.
    [12] Podlubny I (1999) Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications, San Diego: Academic Press.
    [13] Oldham KB, Spanier J (1974) The Fractional Calculus, New York: Academic Press.
    [14] Miller KS, Ross B (1993) An Introduction to The Fractional Calculus and Fractional Differential Equations, New York: John Wiley & Sons.
    [15] Chillingworth DRJ (1976) Differential Topology with a View to Applications, San Francisco: Fearon Publishers.
    [16] Lazopoulos KA, Lazopoulos AK (2019) On the mathematical formulation of fractional derivatives. Prog Fract Diff Appl 5: 261–267. http://dx.doi.org/10.18576/pfda/050402 doi: 10.18576/pfda/050402
    [17] Lazopoulos KA, Lazopoulos AK (2020) On fractional bending of beams with Λ-fractional derivative. Arch Appl Mech 90: 573–584. https://doi.org/10.1007/s00419-019-01626-w doi: 10.1007/s00419-019-01626-w
    [18] Lazopoulos KA, Lazopoulos AK (2020) On plane Λ-fractional linear elasticity theory. Theor Appl Mech Lett 10: 270–275. https://doi.org/10.1016/j.taml.2020.01.035 doi: 10.1016/j.taml.2020.01.035
    [19] Lazopoulos KA, Lazopoulos AK (2020) On the fractional deformation of a linearly elastic bar. J Mech Behav Mater 29: 9–18. https://doi.org/10.1515/jmbm-2020-0002 doi: 10.1515/jmbm-2020-0002
    [20] Lazopoulos KA, Lazopoulos AK (2022) On Λ-fractional elastic solid mechanics. Meccanica 57: 775–791. https://doi.org/10.1007/s11012-021-01370-y doi: 10.1007/s11012-021-01370-y
    [21] Oskouie MF, Ansari R, Rouhi H (2018) Bending analysis of functionally graded nanobeams based on the fractional nonlocal continuum theory by the variational legendre spectral collocation method. Meccanica 53: 1115–1130. https://doi.org/10.1007/s11012-017-0792-0 doi: 10.1007/s11012-017-0792-0
    [22] Liu Y, Qin Z, Chu F (2021) Nonlinear forced vibrations of functionally graded piezoelectric cylindrical shells under electric-thermo-mechanical loads. Int J Mech Sci 201: 106474. https://doi.org/10.1016/j.ijmecsci.2021.106474 doi: 10.1016/j.ijmecsci.2021.106474
    [23] Zorica D, Atanackovic TM, Vrcelj Z, et al. (2016) Dynamic stability of axially loaded nonlocal rod on generalized pasternak foundation. J Eng Mec 143. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001090 doi: 10.1061/(ASCE)EM.1943-7889.0001090
    [24] Sumelka W, Blaszczyk T, Liebold C (2015) Fractional Euler–Bernoulli beams: Theory, numerical study and experimental validation. Eur J Mech A-Solid 54: 243–251. https://doi.org/10.1016/j.euromechsol.2015.07.002 doi: 10.1016/j.euromechsol.2015.07.002
    [25] Sidhardh S, Patnaik S, Semperlotti F (2020) Geometrically nonlinear response of a fractional-order nonlocal model of elasticity. Int J Nonlin Mech 125: 103529. https://doi.org/10.1016/j.ijnonlinmec.2020.103529 doi: 10.1016/j.ijnonlinmec.2020.103529
    [26] Stempin P, Sumelka W (2020) Space-fractional Euler-Bernoulli beam model—Theory and identification for silver nanobeam bending. Int J Mech Sci 186: 105902. https://doi.org/10.1016/j.ijmecsci.2020.105902 doi: 10.1016/j.ijmecsci.2020.105902
    [27] Beda B (2017) Dynamical systems approach of internal length in fractional calculus. Eng Trans 65: 209–215.
    [28] Mohammadi FS, Rahimi R, Sumelka W, et al. (2019) Investigation of free vibration and buckling of Timoshenko nano-beam based on a general form of Eringen theory using conformable fractional derivative and galerkin method. Eng Trans 67: 347–367. http://dx.doi.org/10.24423/EngTrans.1001.20190426. doi: 10.24423/EngTrans.1001.20190426
    [29] Lazopoulos KA (2023) Stability criteria and Λ-fractional mechanics. Fractal Fract 7: 248.https://doi.org/10.3390/fractalfract7030248 doi: 10.3390/fractalfract7030248
    [30] Ericksen JL (1975) Equilibrium of bars. J Elasticity 5: 191–201. https://doi.org/10.1007/BF00126984 doi: 10.1007/BF00126984
    [31] Gelfand IH, Fomin SV (1963) Calculus of Variations, Englewood Cliffs: Prentice Hall.
    [32] Gao DY (2000) Duality Principles in Non-convex Systems: Theory, Methods and Applications, New York: Springer New York. https://doi.org/10.1007/978-1-4757-3176-7
    [33] James RD (1979) Coexistent phases in the one-dimensional static theory of elastic bars. Arch Ration Mech An 72: 99–140. https://doi.org/10.1007/BF00249360 doi: 10.1007/BF00249360
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(885) PDF downloads(79) Cited by(1)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog