Since the global stability criteria for Λ-fractional mechanics have been established, the Λ-fractional beam bending problem is discussed within that context. The co-existence of the phase phenomenon is revealed, allowing for elastic curves with non-smooth curvatures. The variational bending problem in the Λ-fractional space is considered. Global minimization of the total energy function of beam bending is necessarily applied. The variational Euler-Lagrange equation yields an equilibrium equation of the elastic curve, with the simultaneous possible corners being expressed by Weierstrass-Erdmann corner conditions.
Citation: K.A. Lazopoulos, A.K. Lazopoulos. Beam bending and Λ-fractional analysis[J]. AIMS Materials Science, 2023, 10(4): 604-617. doi: 10.3934/matersci.2023034
Since the global stability criteria for Λ-fractional mechanics have been established, the Λ-fractional beam bending problem is discussed within that context. The co-existence of the phase phenomenon is revealed, allowing for elastic curves with non-smooth curvatures. The variational bending problem in the Λ-fractional space is considered. Global minimization of the total energy function of beam bending is necessarily applied. The variational Euler-Lagrange equation yields an equilibrium equation of the elastic curve, with the simultaneous possible corners being expressed by Weierstrass-Erdmann corner conditions.
[1] | Bagley RL, Torvik PJ (1986) On the fractional calculus model of viscoelastic behavior. J Rheol 30: 133–155. https://doi.org/10.1122/1.549887 doi: 10.1122/1.549887 |
[2] | Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol 27: 201–210. https://doi.org/10.1122/1.549724 doi: 10.1122/1.549724 |
[3] | Atanackovic TM, Stankovic B (2002) Dynamics of a viscoelastic rod of fractional derivative type. ZAMM-Z Angew Math Me 82: 377–386. https://doi.org/10.1002/1521-4001(200206)82:6<377::AID-ZAMM377>3.0.CO;2-M doi: 10.1002/1521-4001(200206)82:6<377::AID-ZAMM377>3.0.CO;2-M |
[4] | Mainardi F (2010) Fractional Calculus and Waves in Linear Viscoelasticity, London: Imperial College Press. https://doi.org/10.1142/p614 |
[5] | Lazopoulos KA (2006) Nonlocal continuum mechanics and fractional calculus. Mech Res Commun 33: 753–757. https://doi.org/10.1016/j.mechrescom.2006.05.001 doi: 10.1016/j.mechrescom.2006.05.001 |
[6] | Truesdell C, Noll W (2004) The Non-linear Field Theories of Mechanics, Heidelberg: Springer Berlin. https://doi.org/10.1007/978-3-662-10388-3 |
[7] | Eringen AC (2002) Nonlocal Continuum Field Theories, New York: Springer New York. https://doi.org/10.1007/b97697 |
[8] | Leibniz GW (1849) Letter to G.A. L'Hospital. Leibnitzens mathematishe Schriften 2: 301–302. |
[9] | Liouville J (1832) Memoires sur le calcul des differentielles a indices quelconques. J Ec Polytech 13: 71–162. |
[10] | Riemann B (2013) Versuch einer allgemeinen auffassung der integration and differentiation, In: Dedekind R, Weber HM, Bernard Riemann's Gesammelte Mathematische Werke und Wissenschaftlicher Nachlass, Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139568050 |
[11] | Samko SG, Kilbas AA, Marichev OI (1993) Fractional Integrals and Derivatives: Theory and Applications, Switzerland: Gordon and Breach Science Publishers. |
[12] | Podlubny I (1999) Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications, San Diego: Academic Press. |
[13] | Oldham KB, Spanier J (1974) The Fractional Calculus, New York: Academic Press. |
[14] | Miller KS, Ross B (1993) An Introduction to The Fractional Calculus and Fractional Differential Equations, New York: John Wiley & Sons. |
[15] | Chillingworth DRJ (1976) Differential Topology with a View to Applications, San Francisco: Fearon Publishers. |
[16] | Lazopoulos KA, Lazopoulos AK (2019) On the mathematical formulation of fractional derivatives. Prog Fract Diff Appl 5: 261–267. http://dx.doi.org/10.18576/pfda/050402 doi: 10.18576/pfda/050402 |
[17] | Lazopoulos KA, Lazopoulos AK (2020) On fractional bending of beams with Λ-fractional derivative. Arch Appl Mech 90: 573–584. https://doi.org/10.1007/s00419-019-01626-w doi: 10.1007/s00419-019-01626-w |
[18] | Lazopoulos KA, Lazopoulos AK (2020) On plane Λ-fractional linear elasticity theory. Theor Appl Mech Lett 10: 270–275. https://doi.org/10.1016/j.taml.2020.01.035 doi: 10.1016/j.taml.2020.01.035 |
[19] | Lazopoulos KA, Lazopoulos AK (2020) On the fractional deformation of a linearly elastic bar. J Mech Behav Mater 29: 9–18. https://doi.org/10.1515/jmbm-2020-0002 doi: 10.1515/jmbm-2020-0002 |
[20] | Lazopoulos KA, Lazopoulos AK (2022) On Λ-fractional elastic solid mechanics. Meccanica 57: 775–791. https://doi.org/10.1007/s11012-021-01370-y doi: 10.1007/s11012-021-01370-y |
[21] | Oskouie MF, Ansari R, Rouhi H (2018) Bending analysis of functionally graded nanobeams based on the fractional nonlocal continuum theory by the variational legendre spectral collocation method. Meccanica 53: 1115–1130. https://doi.org/10.1007/s11012-017-0792-0 doi: 10.1007/s11012-017-0792-0 |
[22] | Liu Y, Qin Z, Chu F (2021) Nonlinear forced vibrations of functionally graded piezoelectric cylindrical shells under electric-thermo-mechanical loads. Int J Mech Sci 201: 106474. https://doi.org/10.1016/j.ijmecsci.2021.106474 doi: 10.1016/j.ijmecsci.2021.106474 |
[23] | Zorica D, Atanackovic TM, Vrcelj Z, et al. (2016) Dynamic stability of axially loaded nonlocal rod on generalized pasternak foundation. J Eng Mec 143. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001090 doi: 10.1061/(ASCE)EM.1943-7889.0001090 |
[24] | Sumelka W, Blaszczyk T, Liebold C (2015) Fractional Euler–Bernoulli beams: Theory, numerical study and experimental validation. Eur J Mech A-Solid 54: 243–251. https://doi.org/10.1016/j.euromechsol.2015.07.002 doi: 10.1016/j.euromechsol.2015.07.002 |
[25] | Sidhardh S, Patnaik S, Semperlotti F (2020) Geometrically nonlinear response of a fractional-order nonlocal model of elasticity. Int J Nonlin Mech 125: 103529. https://doi.org/10.1016/j.ijnonlinmec.2020.103529 doi: 10.1016/j.ijnonlinmec.2020.103529 |
[26] | Stempin P, Sumelka W (2020) Space-fractional Euler-Bernoulli beam model—Theory and identification for silver nanobeam bending. Int J Mech Sci 186: 105902. https://doi.org/10.1016/j.ijmecsci.2020.105902 doi: 10.1016/j.ijmecsci.2020.105902 |
[27] | Beda B (2017) Dynamical systems approach of internal length in fractional calculus. Eng Trans 65: 209–215. |
[28] | Mohammadi FS, Rahimi R, Sumelka W, et al. (2019) Investigation of free vibration and buckling of Timoshenko nano-beam based on a general form of Eringen theory using conformable fractional derivative and galerkin method. Eng Trans 67: 347–367. http://dx.doi.org/10.24423/EngTrans.1001.20190426. doi: 10.24423/EngTrans.1001.20190426 |
[29] | Lazopoulos KA (2023) Stability criteria and Λ-fractional mechanics. Fractal Fract 7: 248.https://doi.org/10.3390/fractalfract7030248 doi: 10.3390/fractalfract7030248 |
[30] | Ericksen JL (1975) Equilibrium of bars. J Elasticity 5: 191–201. https://doi.org/10.1007/BF00126984 doi: 10.1007/BF00126984 |
[31] | Gelfand IH, Fomin SV (1963) Calculus of Variations, Englewood Cliffs: Prentice Hall. |
[32] | Gao DY (2000) Duality Principles in Non-convex Systems: Theory, Methods and Applications, New York: Springer New York. https://doi.org/10.1007/978-1-4757-3176-7 |
[33] | James RD (1979) Coexistent phases in the one-dimensional static theory of elastic bars. Arch Ration Mech An 72: 99–140. https://doi.org/10.1007/BF00249360 doi: 10.1007/BF00249360 |