Research article Topical Sections

Investigation of water desalination/purification with molecular dynamics and machine learning techniques

  • Received: 03 September 2022 Revised: 14 October 2022 Accepted: 25 October 2022 Published: 09 November 2022
  • This paper incorporates a number of parameters, such as nanopore size, wall wettability, and electric field strength, to assess their effect on ion removal from nanochannels filled with water. Molecular dynamics simulations are incorporated to monitor the process and a numerical database is created with the results. We show that the movement of ions in water nanochannels under the effect of an electric field is multifactorial. Potential energy regions of various strength are formed inside the nanochannel, and ions are either drifted to the walls and rejected from the solution or form clusters that are trapped inside low potential energy regions. Further computational investigation is made with the incorporation of machine learning techniques that suggest an alternative path to predict the water/ion solution properties. Our test procedure here involves the calculation of diffusion coefficient values and the incorporation of four ML algorithms, for comparison reasons, which exploit MD calculated results and are trained to predict the diffusion coefficient values in cases where no simulation data exist. This two-fold computational approach constitutes a fast and accurate solution that could be adjusted to similar ion separation models for property extraction.

    Citation: Christos Stavrogiannis, Filippos Sofos, Theodoros. E. Karakasidis, Denis Vavougios. Investigation of water desalination/purification with molecular dynamics and machine learning techniques[J]. AIMS Materials Science, 2022, 9(6): 919-938. doi: 10.3934/matersci.2022054

    Related Papers:

  • This paper incorporates a number of parameters, such as nanopore size, wall wettability, and electric field strength, to assess their effect on ion removal from nanochannels filled with water. Molecular dynamics simulations are incorporated to monitor the process and a numerical database is created with the results. We show that the movement of ions in water nanochannels under the effect of an electric field is multifactorial. Potential energy regions of various strength are formed inside the nanochannel, and ions are either drifted to the walls and rejected from the solution or form clusters that are trapped inside low potential energy regions. Further computational investigation is made with the incorporation of machine learning techniques that suggest an alternative path to predict the water/ion solution properties. Our test procedure here involves the calculation of diffusion coefficient values and the incorporation of four ML algorithms, for comparison reasons, which exploit MD calculated results and are trained to predict the diffusion coefficient values in cases where no simulation data exist. This two-fold computational approach constitutes a fast and accurate solution that could be adjusted to similar ion separation models for property extraction.



    加载中


    [1] Abraham J, Vasu KS, Williams CD, et al. (2017) Tunable sieving of ions using graphene oxide membranes. Nat Nanotechnol 12: 546–550. https://doi.org/10.1038/nnano.2017.21 doi: 10.1038/nnano.2017.21
    [2] Padmavathy N, Behera SS, Pathan S, et al. (2019) Interlocked graphene oxide provides narrow channels for effective water desalination through forward osmosis. ACS Appl Mater Interfaces 11: 7566–7575. https://doi.org/10.1021/acsami.8b20598 doi: 10.1021/acsami.8b20598
    [3] Yang T, Lin H, Loh KP, et al. (2019) Fundamental transport mechanisms and advancements of graphene oxide membranes for molecular separation. Chem Mater 31: 1829–1846. https://doi.org/10.1021/acs.chemmater.8b03820 doi: 10.1021/acs.chemmater.8b03820
    [4] Landon J, Gao X, Omosebi A, et al. (2019) Progress and outlook for capacitive deionization technology. Curr Opin Chem Eng 25: 1–8. https://doi.org/10.1016/j.coche.2019.06.006 doi: 10.1016/j.coche.2019.06.006
    [5] Barbosa GD, Liu X, Bara JE, et al. (2021) High-salinity brine desalination with amine-based temperature swing solvent extraction: A molecular dynamics study. J Mol Liq 341: 117359. https://doi.org/10.1016/j.molliq.2021.117359 doi: 10.1016/j.molliq.2021.117359
    [6] Mahmoud A, Nassef E, Salah H, et al. (2020) Use of hydrazide derivative of poly methylacrylate for the removal of cupric ions from solutions. AIMS Mater Sci 7: 420–430. https://doi.org/10.3934/matersci.2020.4.420 doi: 10.3934/matersci.2020.4.420
    [7] Yang F, He Y, Rosentsvit L, et al. (2021) Flow-electrode capacitive deionization: A review and new perspectives. Water Res 200: 117222. https://doi.org/10.1016/j.watres.2021.117222 doi: 10.1016/j.watres.2021.117222
    [8] Muscatello J, Jaeger F, Matar OK, et al. (2016) Optimizing water transport through graphene-based membranes: Insights from nonequilibrium molecular dynamics. ACS Appl Mater Interfaces 8: 12330–12336. https://doi.org/10.1021/acsami.5b12112 doi: 10.1021/acsami.5b12112
    [9] Cohen-Tanugi D, Lin L-C, Grossman JC (2016) Multilayer nanoporous graphene membranes for water desalination. Nano Lett 16: 1027–1033. https://doi.org/10.1021/acs.nanolett.5b04089 doi: 10.1021/acs.nanolett.5b04089
    [10] Giri AK, Cordeiro MNDS (2021) Heavy metal ion separation from industrial wastewater using stacked graphene Membranes: A molecular dynamics simulation study. J Mol Liq 338: 116688. https://doi.org/10.1016/j.molliq.2021.116688 doi: 10.1016/j.molliq.2021.116688
    [11] Yu Y, Tan R, Ding H (2020) Controlling ion transport in a C2N-based nanochannel with tunable interlayer spacing. Phys Chem Chem Phys 22: 16855–16861. https://doi.org/10.1039/D0CP02993A doi: 10.1039/D0CP02993A
    [12] Shao C, Zhao Y, Qu L (2020) Tunable graphene systems for water desalination. ChemNanoMat 6: 1028–1048. https://doi.org/10.1002/cnma.202000041 doi: 10.1002/cnma.202000041
    [13] Abdullah N, Yusof N, Ismail AF, et al. (2021) Insights into metal-organic frameworks-integrated membranes for desalination process: A review. Desalination 500: 114867. https://doi.org/10.1016/j.desal.2020.114867 doi: 10.1016/j.desal.2020.114867
    [14] Presumido PH, Primo A, Vilar VJP, et al. (2021) Large area continuous multilayer graphene membrane for water desalination. Chem Eng J 413: 127510. https://doi.org/10.1016/j.cej.2020.127510 doi: 10.1016/j.cej.2020.127510
    [15] Hinds BJ, Chopra N, Rantell T, et al. (2004) Aligned multiwalled carbon nanotube membranes. Science 303: 62-65. https://doi.org/10.1126/science.1092048 doi: 10.1126/science.1092048
    [16] Agrawal KV, Shimizu S, Drahushuk LW, et al. (2016) Observation of extreme phase transition temperatures of water confined inside isolated carbon nanotubes. Nat Nanotechnol 12: 267–273. https://doi.org/10.1038/nnano.2016.254 doi: 10.1038/nnano.2016.254
    [17] Hou D, Qiao G, Wang P (2021) Molecular dynamics study on water and ions transport mechanism in nanometer channel of 13X zeolite. Chem Eng J 420: 129975. https://doi.org/10.1016/j.cej.2021.129975 doi: 10.1016/j.cej.2021.129975
    [18] Liu Y, Cheng Z, Song M, et al. (2021) Molecular dynamics simulation-directed rational design of nanoporous graphitic carbon nitride membranes for water desalination. J Membrane Sci 620: 118869. https://doi.org/10.1016/j.memsci.2020.118869 doi: 10.1016/j.memsci.2020.118869
    [19] Zhao Y, Huang D, Su J, et al. (2020) Coupled transport of water and ions through graphene nanochannels. J Phys Chem C 124: 17320–17330. https://doi.org/10.1021/acs.jpcc.0c04158 doi: 10.1021/acs.jpcc.0c04158
    [20] Chen L, Wang SY, Xiang X, et al. (2020) Mechanism of surface nanostructure changing wettability: A molecular dynamics simulation. Comput Mater Sci 171: 109223. https://doi.org/10.1016/j.commatsci.2019.109223 doi: 10.1016/j.commatsci.2019.109223
    [21] Mahmood A, Chen S, Chen L, et al. (2020) Spontaneous propulsion of a water nanodroplet induced by a wettability gradient: A molecular dynamics simulation study. Phys Chem Chem Phys 22: 4805-4814. https://doi.org/10.1039/C9CP06718C doi: 10.1039/C9CP06718C
    [22] Ranathunga DTS, Shamir A, Dai X, et al. (2020) Molecular dynamics simulations of water condensation on surfaces with tunable wettability. Langmuir 36: 7383-7391. https://doi.org/10.1021/acs.langmuir.0c00915 doi: 10.1021/acs.langmuir.0c00915
    [23] De Luca S, Todd BD, Hansen JS, et al. (2013) Electropumping of water with rotating electric fields. J Chem Phys 138: 154712. https://doi.org/10.1063/1.4801033 doi: 10.1063/1.4801033
    [24] Kazemi AS, Nataj ZE, Abdi Y, et al. (2021) Tuning wettability and surface order of MWCNTs by functionalization for water desalination. Desalination 508: 115049. https://doi.org/10.1016/j.desal.2021.115049 doi: 10.1016/j.desal.2021.115049
    [25] Giri AK, Teixeira F, Cordeiro MNDS (2019) Salt separation from water using graphene oxide nanochannels: A molecular dynamics simulation study. Desalination 460: 1–14. https://doi.org/10.1016/j.desal.2019.02.014 doi: 10.1016/j.desal.2019.02.014
    [26] Zong D, Yang Z, Duan Y (2017) Wettability of a nano-droplet in an electric field: A molecular dynamics study. Appl Therm Eng 122: 71–79. https://doi.org/10.1016/j.applthermaleng.2017.04.064 doi: 10.1016/j.applthermaleng.2017.04.064
    [27] Bruus H (2008) Theoretical Microfluidics, Oxford, New York: Oxford University Press.
    [28] Bartzis V, Sarris IE (2020) A theoretical model for salt ion drift due to electric field suitable to seawater desalination. Desalination 473: 114163. https://doi.org/10.1016/j.desal.2019.114163 doi: 10.1016/j.desal.2019.114163
    [29] Bartzis V, Ninos G, Sarris IE (2022) Water purification from heavy metals due to electric field ion drift. Water 14: 2372. https://doi.org/10.3390/w14152372 doi: 10.3390/w14152372
    [30] Sofos F (2021) A water/ion separation device: Theoretical and numerical investigation. Appl Sci 11: 8548. https://doi.org/10.3390/app11188548 doi: 10.3390/app11188548
    [31] Sofos F, Karakasidis T, Sarris IE (2020) Molecular dynamics simulations of ion drift in nanochannel water flow. Nanomaterials 10: 2373. https://doi.org/10.3390/nano10122373 doi: 10.3390/nano10122373
    [32] Kandezi MK, Lakmehsari MS, Matta CF (2020) Electric field assisted desalination of water using B- and N-doped-graphene sheets: A non-equilibrium molecular dynamics study. J Mol Liq 302: 112574. https://doi.org/10.1016/j.molliq.2020.112574 doi: 10.1016/j.molliq.2020.112574
    [33] Lynch CI, Rao S, Sansom MSP (2020) Water in nanopores and biological channels: A molecular simulation perspective. Chem Rev 120: 10298–10335. https://doi.org/10.1021/acs.chemrev.9b00830 doi: 10.1021/acs.chemrev.9b00830
    [34] Steinhauser MO (2017) Multiscale modeling, coarse-graining and shock wave computer simulations in materials science. AIMS Mater Sci 4: 1319–1357. https://doi.org/10.3934/matersci.2017.6.1319 doi: 10.3934/matersci.2017.6.1319
    [35] Huang DM, Cottin-Bizonne C, Ybert C, et al. (2008) Aqueous electrolytes near hydrophobic surfaces: Dynamic effects of ion specificity and hydrodynamic slip. Langmuir 24: 1442–1450. https://doi.org/10.1021/la7021787 doi: 10.1021/la7021787
    [36] Bonthuis DJ, Horinek D, Bocquet L, et al. (2009) Electrohydraulic power conversion in planar nanochannels. Phys Rev Lett 103: 144503. https://doi.org/10.1103/PhysRevLett.103.144503 doi: 10.1103/PhysRevLett.103.144503
    [37] Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117: 1–19. https://doi.org/10.1006/jcph.1995.1039 doi: 10.1006/jcph.1995.1039
    [38] Karniadakis G, Beşkök A, Aluru NR (2005) Microflows and Nanoflows: Fundamentals and Simulation, Springer.
    [39] Dimiduk DM, Holm EA, Niezgoda SR (2018) Perspectives on the impact of machine learning. deep learning, and artificial intelligence on materials, processes, and structures engineering. Integr Mater Manuf I 7: 157–172. https://doi.org/10.1007/s40192-018-0117-8 doi: 10.1007/s40192-018-0117-8
    [40] Sofos F, Stavrogiannis C, Exarchou-Kouveli KK, et al. (2022) Current trends in fluid research in the era of artificial intelligence: A review. Fluids 7: 116. https://doi.org/10.3390/fluids7030116 doi: 10.3390/fluids7030116
    [41] Abbaspour M, Akbarzadeh H, Jorabchi MN, et al. (2022) Investigation of doped carbon nanotubes on desalination process using molecular dynamics simulations. J Mol Liq 348: 118040. https://doi.org/10.1016/j.molliq.2021.118040 doi: 10.1016/j.molliq.2021.118040
    [42] Voronov RS, Papavassiliou DV, Lee LL (2006) Boundary slip and wetting properties of interfaces: Correlation of the contact angle with the slip length. J Chem Phys 124: 204701. https://doi.org/10.1063/1.2194019 doi: 10.1063/1.2194019
    [43] Ibrar I, Yadav S, Braytee A, et al. (2022) Evaluation of machine learning algorithms to predict internal concentration polarization in forward osmosis. J Membrane Sci 646: 120257. https://doi.org/10.1016/j.memsci.2022.120257 doi: 10.1016/j.memsci.2022.120257
    [44] Odabaşı Ç, Dologlu P, Gülmez F, et al. (2022) Investigation of the factors affecting reverse osmosis membrane performance using machine-learning techniques. Comput Chem Eng 159: 107669. https://doi.org/10.1016/j.compchemeng.2022.107669 doi: 10.1016/j.compchemeng.2022.107669
    [45] Salari K, Zarafshan P, Khashehchi M, et al. (2022) Modeling and predicting of water production by capacitive deionization method using artificial neural networks. Desalination 540: 115992. https://doi.org/10.1016/j.desal.2022.115992 doi: 10.1016/j.desal.2022.115992
    [46] Yin G, Alazzawi FJI, Bokov D, et al. (2022) Multiple machine learning models for prediction of CO2 solubility in potassium and sodium based amino acid salt solutions. Arab J Chem 15: 103608. https://doi.org/10.1016/j.arabjc.2021.103608 doi: 10.1016/j.arabjc.2021.103608
    [47] Sofos F, Karakasidis TE, Liakopoulos A (2012) Surface wettability effects on flow in rough wall nanochannels. Microfluid Nanofluid 12: 25–31. https://doi.org/10.1007/s10404-011-0845-y doi: 10.1007/s10404-011-0845-y
    [48] Jiang H, Müller-Plathe F, Panagiotopoulos AZ (2017) Contact angles from Young's equation in molecular dynamics simulations. J Chem Phys 147: 84708. https://doi.org/10.1063/1.4994088 doi: 10.1063/1.4994088
    [49] Jorgensen WL, Chandrasekhar J, Madura JD, et al. (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79: 926–935. https://doi.org/10.1063/1.445869 doi: 10.1063/1.445869
    [50] Bagheri M, Akbari A, Mirbagheri SA (2019) Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques: A critical review. Process Saf Environ 123: 229–252. https://doi.org/10.1016/j.psep.2019.01.013 doi: 10.1016/j.psep.2019.01.013
    [51] Behnam P, Faegh M, Khiadani M (2022) A review on state-of-the-art applications of data-driven methods in desalination systems. Desalination 532: 115744. https://doi.org/10.1016/j.desal.2022.115744 doi: 10.1016/j.desal.2022.115744
    [52] Bratko D, Daub CD, Leung K, et al. (2007) Effect of field direction on electrowetting in a nanopore. J Am Chem Soc 129: 2504–2510. https://doi.org/10.1021/ja0659370 doi: 10.1021/ja0659370
    [53] Yeo CSH, Xie Q, Wang X, et al. (2020) Understanding and optimization of thin film nanocomposite membranes for reverse osmosis with machine learning. J Membrane Sci 606: 118135. https://doi.org/10.1016/j.memsci.2020.118135 doi: 10.1016/j.memsci.2020.118135
  • matersci-09-06-054-s01.pdf
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1952) PDF downloads(139) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog