Citation: Zoubir Chaieb, Ould Mohamed Ouarda, Azzeddine Abderrahmane Raho, Mouhyddine Kadi-Hanifi. Effect of Fe and Si impurities on the precipitation kinetics of the GPB zones in the Al-3wt%Cu-1wt%Mg alloy[J]. AIMS Materials Science, 2016, 3(4): 1443-1455. doi: 10.3934/matersci.2016.4.1443
[1] | Silcock JM (1960) The structural ageing characteristics of Al-Cu-Mg alloys with copper: Magnesium weight ratios of 7:1 and 2.2:1. J Inst Met 89: 203–210. |
[2] | Gupta AK, Gaunt P, Chaturvedi MC (1987) The crystallography and morphology of the S’-phase precipitate in an Al (CuMg) alloy. Phil Mag A 55: 375–387. doi: 10.1080/01418618708209875 |
[3] | Radmilovic V, Thomas G, Shiflet GJ, et al. (1989) On the nucleation and growth of Al2CuMg (S’) in AlLiCuMg and AlCuMg alloys. Scripta Mater 23: 1141–1146. doi: 10.1016/0036-9748(89)90315-3 |
[4] | Ringer SP, Sakura T, Polmear IJ (1997) Origins of hardening in aged Al-Cu-Mg-(Ag) alloys. Acta Mater 45: 3731–3744. doi: 10.1016/S1359-6454(97)00039-6 |
[5] | Federighi T (1958) Quenched-in vacancies and rate of formation of zones in aluminum alloys. Acta Metall 6: 379–381. doi: 10.1016/0001-6160(58)90078-6 |
[6] | Federighi T, Thomas G (1962) The interaction between vacancies and zones and the kinetics of pre-precipitation in Al-rich alloys. Phil Mag 7: 127–131. doi: 10.1080/14786436208201864 |
[7] | Girifalco LA, Herman H (1965) A model for the growth of Guinier-Preston zones-the vacancy pump. Acta Metall 13: 583–590. doi: 10.1016/0001-6160(65)90120-3 |
[8] | Wang SC, Li CZ, Yan MG (1990) Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg alloys. Acta Metall Sin 3A: 104–109. |
[9] | Starke EA, Staley JT (1996) Application of modern aluminum alloys to aircraft. Prog Aerosp Sci 32: 131–172. |
[10] | Leschiner LN, Kovalyov VG (1990) Effect of Iron and Silicon in Aluminium and Its Alloys. Key Eng Mater 44-45: 299–310. |
[11] | Guo Z, Sha W (2005) Quantification of precipitate fraction in Al-Si-Cu alloys. Mater Sci Eng A 392: 449–452. doi: 10.1016/j.msea.2004.09.020 |
[12] | Waterloo G, Hansen V, Gjonnes J, et al. (2001) Effect of predeformation and preaging at room temperature in Al-Zn-Mg-(Cu, Zr) alloys. Mater Sci Eng A 303: 226–233. doi: 10.1016/S0921-5093(00)01883-9 |
[13] | Wang G, Sun Q, Feng L, et al. (2007) Influence of Cu content on ageing behavior of AlSiMgCu cast alloys. Mater Design 28: 1001–1005. doi: 10.1016/j.matdes.2005.11.015 |
[14] | Novelo-Peralta O, Gonzalez G, Lara Rodriguez GA (2008) Characterization of precipitation in Al-Mg-Cu alloys by X-ray diffraction peak broadening analysis. Mater Charact 59: 773–780. doi: 10.1016/j.matchar.2007.06.012 |
[15] | Shokuhfar S, Ahmadi S, Arabi H, et al. (2009) Mechanisms of precipitates formation in an Al-Cu-Li-Zr alloy using DSC technique and electrical resistance measurements. Iran J Mater Sci Eng 6: 15–20. |
[16] | Anjabin N, Taheri AK (2010) The effect of aging treatment on mechanical properties of AA6082 alloy: modelling experiment. Iran J Mater Sci Eng 7: 14–21. |
[17] | Johnson WA, Mehl RF (1939) Reaction kinetics in processes of nucleation and growth. Trans Am Inst Mining Metall Eng 135S: 416–458. |
[18] | Avrami M (1941) Kinetics of phase change. III: Granulation, Phase Change and Microstructure. J Chem Phys 9: 177–184 |
[19] | Kolmogorov AN (1937) Statistical theory of crystallization of metals. Bull Acad Sci USSR Ser Math 1: 355–359. |
[20] | Doherty RD (1996) Diffusive phase transformations in the solid state, in Physical Metallurgy 4th edition, eds., Cahn RW, Hassen P, North Holland, Amsterdam, 2: 1364–1505. |
[21] | Christian JW (1975) The theory of phase transformations in metals and alloys, Pergamon Press, Oxford, 542–546. |
[22] | Esmaeili S, Lloyd DJ, Poole WJ (2003) A yield strength model for the Al-Mg-Si-Cu alloy AA6111. Acta Mater 51: 2243–2257. |
[23] | Merlin J, Merle P (1978) Analistic phenomena and structural state in aluminium silver alloys. Scripta Metal 12: 227–232. doi: 10.1016/0036-9748(78)90103-5 |
[24] | Wilson RN, Moore DM, Forsyth PJE (1967) Effect of 0.25% silicon on precipitation processes in an aluminium-2.5% copper-1.2% magnesium alloy. J Inst Met 95: 177–183. |
[25] | Hutchinson CR, Ringer SP (2000) Precipitation processes in AlCuMg alloys microalloyed with Si. Metall Mater Trans A 31: 2721–2733. doi: 10.1007/BF02830331 |
[26] | Lifshitz IM, Slyosov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19: 35–50. doi: 10.1016/0022-3697(61)90054-3 |
[27] | Wagner C (1961) Theorie der Alterung von Niderschlagen durch Umlösen (Ostwald Reifung). Z Electrochem 65: 581–591. |
[28] | Khan IN, Starink MJ (2008) Microstructure and strength modelling of Al-Cu-Mg alloys during non-isothermal treatments: Part 1—controlled heating and cooling. Mater Sci Technol 24: 1403–1410. doi: 10.1179/174328408X317020 |
[29] | Khan IN, Starink MJ, Yan JL (2008) A model for precipitation kinetics and strengthening in Al-Cu-Mg alloys. Mater Sci Eng A 472: 66–74. doi: 10.1016/j.msea.2007.03.033 |
[30] | Mantina M, Wang Y, Arroyave R, et al. (2008) First-principles calculation of self-diffusion coefficients. Phys Rev Lett 100: 5901–5904. |
[31] | Mantina M, Wang Y, Chen LQ, et al. (2009) First principles impurity diffusion coefficients. Acta Mater 57: 4102–4108. doi: 10.1016/j.actamat.2009.05.006 |
[32] | Peterson NL, Rothman SJ (1970) Impurity diffusion in aluminum. Phys Rev B 1: 3264–3273. doi: 10.1103/PhysRevB.1.3264 |
[33] | Murphy JB (1961) Interdiffusion in dilute aluminium-copper solid solutions. Acta Metall 9: 563–569. |
[34] | Du Y, Chang YA, Huang B, et al. (2003) Diffusion coefficients of some solutes in fcc and liquid Al: Critical evaluation and correlation. Mater Sci Eng A 363: 140–151. doi: 10.1016/S0921-5093(03)00624-5 |
[35] | Rothman SJ, Peterson NL, Nowicki LJ, et al. (1974) Tracer diffusion of Magnesium in Aluminum single crystals. Phys Status Solidi B 63K: 29–33. |
[36] | Moreau G, Cornet JA, Calais D (1971) Acceleration de la diffusion chimique sous irradiation dans le systeme aluminium-magnesium. J Nucl Mater 38: 197–202. doi: 10.1016/0022-3115(71)90043-2 |
[37] | Sandberg N, Holmestad R (2006) First-principles calculations of impurity diffusion activation energies in Al. Phys Rev B 73: 014108. doi: 10.1103/PhysRevB.73.014108 |
[38] | Adams JB, Foiles SM, Wolfer WG (1989) Self-diffusion and impurity diffusion of FCC metals using the 5-frequency model and the Embedded Atom Method. J Mater Res 4: 102–112. |
[39] | Verlinden J, Gijbbels R (1980) Impurity diffusion in aluminum as determined from ion-probe mass analysis. Adv Mass Spectrom 8A: 485–495. |
[40] | Simonovic D, Sluiter MHF (2009) Impurity diffusion activation energies in Al from first principles. Phys Rev B 79: 054304. |
[41] | Fujikawa S, Hirano K (1977) Diffusion of 28 Mg in aluminum. Mater Sci Eng 27: 25–33. doi: 10.1016/0025-5416(77)90190-2 |