We construct a toric generalised Kähler structure on $ \mathbb{C}P^2 $ and show that the various structures such as the complex structure, metric etc are expressed in terms of certain elliptic functions. We also compute the generalised Kähler potential in terms of integrals of elliptic functions.
Citation: Francesco Bonechi, Jian Qiu, Marco Tarlini. Generalised Kähler structure on $ \mathbb{C}P^2 $ and elliptic functions[J]. Journal of Geometric Mechanics, 2023, 15(1): 188-223. doi: 10.3934/jgm.2023009
We construct a toric generalised Kähler structure on $ \mathbb{C}P^2 $ and show that the various structures such as the complex structure, metric etc are expressed in terms of certain elliptic functions. We also compute the generalised Kähler potential in terms of integrals of elliptic functions.
[1] | V. Apostolov, P. Gauduchon, G. Grantcharov, Bihermitian structures on complex surfaces, Proceedings of The London Mathematical Society, 79 (1999), 414–428. https://doi.org/10.1112/S0024611599012058 doi: 10.1112/S0024611599012058 |
[2] | M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Dover Books on Mathematics. Dover Publications, 2012. |
[3] | F. Bischoff, M. Gualtieri, M. Zabzine, Morita equivalence and the generalized Kähler potential, 2018, arXiv: 1804.05412. |
[4] | F. Bischoff, Morita equivalence and generalized Kähler geometry, University of Toronto Ph.D thesis, 2019. Available from: https://tspace.library.utoronto.ca/handle/1807/97318 |
[5] | H. Bursztyn, O. Radko, Gauge equivalence of Dirac structures and symplectic groupoids, Annales de l'Institut Fourier, 53 (2003), 309–337. https://doi.org/10.5802/aif.1945 doi: 10.5802/aif.1945 |
[6] | T. Delzant, Hamiltoniens périodiques et images convexes de l'application moment, Bull. Soc. Math. France, 116 (1988), 315–339. https://doi.org/10.24033/bsmf.2100 doi: 10.24033/bsmf.2100 |
[7] | P. Du Val, Elliptic Functions and Elliptic Curves, London Mathematical Society Lecture Note Series. Cambridge University Press, 1973. |
[8] | W. Fulton, Introduction to toric varieties, Annals of mathematics studies. Princeton Univ. Press, Princeton, NJ, 1993. |
[9] | P. Gauduchon, Hermitian connections and Dirac operators, Bol. U. M. I., XI-B (1997), 257–289. |
[10] | M. Gualtieri, Generalized Kähler geometry, Comm. Math. Phys., 331 (2014), 297–331. https://doi.org/10.1007/s00220-014-1926-z doi: 10.1007/s00220-014-1926-z |
[11] | V. Guillemin, Kähler structures on toric varieties, J. Differential Geom., 40 (1994), 285–309. https://doi.org/10.4310/jdg/1214455538 doi: 10.4310/jdg/1214455538 |
[12] | N. Hitchin, Generalized Calabi–Yau Manifolds, Q. J. Math., 54 (2003), 281–308. https://doi.org/10.1093/qmath/hag025 doi: 10.1093/qmath/hag025 |
[13] | N. Hitchin, Bihermitian metrics on del pezzo surfaces, J. Symplectic Geom., 5 (2007), 1–8. https://dx.doi.org/10.4310/JSG.2007.v5.n1.a2 doi: 10.4310/JSG.2007.v5.n1.a2 |
[14] | C. M. Hull, Compactifications of the heterotic superstring, Phys. Lett. B, 178 (1986), 357–364. https://doi.org/10.1016/0370-2693(86)91393-6 doi: 10.1016/0370-2693(86)91393-6 |
[15] | S. J. Gates, C. M. Hull, M. Roček, Twisted multiplets and new supersymmetric nonlinear sigma models, Nucl. Phys. B, 248 (1984), 157–186. https://doi.org/10.1016/0550-3213(84)90592-3 doi: 10.1016/0550-3213(84)90592-3 |
[16] | E. Lerman, Symplectic Cuts, Math. Res. Lett., 2 (1995), 247–258. https://dx.doi.org/10.4310/MRL.1995.v2.n3.a2 doi: 10.4310/MRL.1995.v2.n3.a2 |
[17] | S. Li, D. Rupel, Symplectic groupoids for cluster manifolds, 2018, arXiv: 1807.03450. |
[18] | U. Lindstrom, M. Rocek, R. von Unge, M. Zabzine, Generalized Kahler manifolds and off-shell supersymmetry, Comm. Math. Phys., 269 (2007), 833–849. https://doi.org/10.1007/s00220-006-0149-3 doi: 10.1007/s00220-006-0149-3 |
[19] | S. N. M. Ruijsenaars, Complete integrability of relativistic Calogero-Moser systems and elliptic function identities, Comm. Math. Phys., 110 (1987), 191–213. https://doi.org/10.1007/BF01207363 doi: 10.1007/BF01207363 |
[20] | A. Strominger, Superstrings with torsion, Nucl. Phys. B, 274 (1986), 253–284. https://doi.org/10.1016/0550-3213(86)90286-5 doi: 10.1016/0550-3213(86)90286-5 |
[21] | N. Seiberg, E. Witten, Electric-magnetic duality, monopole condensation, and confinement in n = 2 supersymmetric yang-mills theory, Nucl. Phys. B, 426 (1994), 19–52. https://doi.org/10.1016/0550-3213(94)90124-4 doi: 10.1016/0550-3213(94)90124-4 |
[22] | A. Strominger, S. T. Yau, E. Zaslow, Mirror symmetry is T duality, Nucl. Phys. B, 479 (1996), 243–259. https://doi.org/10.1016/0550-3213(96)00434-8 doi: 10.1016/0550-3213(96)00434-8 |
[23] | A. Weinstein, Symplectic groupoids and Poisson manifolds, Bull. Amer. Math. Soc., 16 (1987), 101–104. https://doi.org/10.1090/S0273-0979-1987-15473-5 doi: 10.1090/S0273-0979-1987-15473-5 |
[24] | P. Xu, Morita equivalence of Poisson manifolds, Comm. Math. Phys., 142 (1991) 493–509. https://doi.org/10.1007/BF02099098 doi: 10.1007/BF02099098 |
[25] | P. Xu, Poisson Manifolds Associated with Group Actions and Classical Triangular r-Matrices, J. Funct. Anal., 112 (1993), 218–240. https://doi.org/10.1006/jfan.1993.1031 doi: 10.1006/jfan.1993.1031 |
[26] | B. Zumino, Supersymmetry and Kähler manifolds, Phys. Lett. B, 87 (1979), 203–206. https://doi.org/10.1016/0370-2693(79)90964-X doi: 10.1016/0370-2693(79)90964-X |