Research article

Bi-continuous semigroups on sequentially complete random Saks spaces

  • Published: 17 September 2025
  • In this paper, we first introduced the Riemann integral for an abstract-valued function from a finite closed real interval to a sequentially complete random Saks space and gave the fundamental theorem of calculus for an $ L^{0} $-Lipschitz function. Then we investigated some important properties peculiar to bi-continuous semigroups on a sequentially complete random Saks space. Finally, based on the above work, we established the Hille-Yosida generation theorem for such bi-continuous semigroups, which extends and improves several known results.

    Citation: Leilei Wei, Xia Zhang, Ming Liu. Bi-continuous semigroups on sequentially complete random Saks spaces[J]. Electronic Research Archive, 2025, 33(9): 5616-5637. doi: 10.3934/era.2025250

    Related Papers:

  • In this paper, we first introduced the Riemann integral for an abstract-valued function from a finite closed real interval to a sequentially complete random Saks space and gave the fundamental theorem of calculus for an $ L^{0} $-Lipschitz function. Then we investigated some important properties peculiar to bi-continuous semigroups on a sequentially complete random Saks space. Finally, based on the above work, we established the Hille-Yosida generation theorem for such bi-continuous semigroups, which extends and improves several known results.



    加载中


    [1] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, 1983. https://doi.org/10.1007/978-1-4612-5561-1
    [2] K. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Semigroup Forum, 63 (2001), 278–280. https://doi.org/10.1007/s002330010042 doi: 10.1007/s002330010042
    [3] F. Kühnemund, A Hille-Yosida theorem for bi-continuous semigroups, Semigroup Forum, 67 (2003), 205–225. https://doi.org/10.1007/s00233-002-5000-3 doi: 10.1007/s00233-002-5000-3
    [4] J. B. Cooper, Saks Spaces and Applications to Functional Analysis, Elsevier, 1978.
    [5] K. Kruse, F. L. Schwenninger, On equicontinuity and tightness of bi-continuous semigroups, J. Math. Anal. Appl., 509 (2022), 125985. https://doi.org/10.1016/j.jmaa.2021.125985 doi: 10.1016/j.jmaa.2021.125985
    [6] A. A. Albanese, E. Mangino, Trotter-Kato theorems for bi-continuous semigroups and applications to Feller semigroups, J. Math. Anal. Appl., 289 (2004), 477–492. https://doi.org/10.1016/j.jmaa.2003.08.032 doi: 10.1016/j.jmaa.2003.08.032
    [7] C. Budde, S. Wegner, A Lumer-Phillips type generation theorem for bi-continuous semigroups, Z. Anal. Anwend., 41 (2022), 65–80. https://doi.org/10.4171/ZAA/1695 doi: 10.4171/ZAA/1695
    [8] B. Farkas, Perturbations of bi-continuous semigroups, Studia Math., 161 (2004), 147–161.
    [9] C. Budde, B. Farkas, A Desch-Schappacher perturbation theorem for bi-continuous semigroups, Math. Nachr., 293 (2020), 1053–1073. https://doi.org/10.1002/mana.201800534 doi: 10.1002/mana.201800534
    [10] N. Gigli, Nonsmooth Differential Geometry-An Approach Tailored for Spaces with Ricci Curvature Bounded from Below, American Mathematical Society, 2018. http://doi.org/10.1090/memo/1196
    [11] T. Guo, Relations between some basic results derived from two kinds of topologies for a random locally convex module, J. Funct. Anal., 258 (2010), 3024–3047. https://doi.org/10.1016/j.jfa.2010.02.002 doi: 10.1016/j.jfa.2010.02.002
    [12] T. Guo, E. Zhang, Y. Wang, Z. Guo, Two fixed point theorems in complete random normed modules and their applications to backward stochastic equations, J. Math. Anal. Appl., 483 (2020), 123644. https://doi.org/10.1016/j.jmaa.2019.123644 doi: 10.1016/j.jmaa.2019.123644
    [13] M. Liu, X. Zhang, L. Dai, Trotter-Kato approximations of impulsive neutral SPDEs in Hilbert spaces, Acta Math. Sin. (Engl. Ser.), 40 (2024), 1229–1243. https://doi.org/10.1007/s10114-023-1553-8 doi: 10.1007/s10114-023-1553-8
    [14] M. Liu, X. Zhang, L. Dai, Trotter-Kato approximations of semilinear stochastic evolution equations in Hilbert spaces, J. Math. Phys., 64 (2023), 043506. https://doi.org/10.1063/5.0137515 doi: 10.1063/5.0137515
    [15] M. Lučić, E. Pasqualetto, I. Vojnović, On the reflexivity properties of Banach bundles and Banach modules, Banach J. Math. Anal., 18 (2024), 7. https://doi.org/10.1007/s43037-023-00315-9 doi: 10.1007/s43037-023-00315-9
    [16] D. H. Thang, T. C. Son, N. Thinh, Semigroups of continuous module homomorphisms on complex complete random normed modules, Lith. Math. J., 59 (2019), 229–250. https://doi.org/10.1007/s10986-019-09442-z doi: 10.1007/s10986-019-09442-z
    [17] T. Guo, X. Zhang, Stone's representation theorem of a group of random unitary operators on complete complex random inner product modules, Sci. Sin. Math., 42 (2012), 181–202.
    [18] X. Zhang, H. Zhang, B. Wang, M. Liu, The Cauchy initial value problem in complete random normed modules, Math. Methods Appl. Sci., 43 (2020), 4007–4015. https://doi.org/10.1002/mma.6169 doi: 10.1002/mma.6169
    [19] N. Dunford, J. T. Schwartz, Linear Operators, Interscience, 1958.
    [20] X. Zhang, M. Liu, On almost surely bounded semigroups of random linear operators, J. Math. Phys., 54 (2013), 053517. https://doi.org/10.1063/1.4805049 doi: 10.1063/1.4805049
    [21] T. Guo, S. Peng, A characterization for an $L(\mu, \mathbb{K})$-topological module to admit enough canonical module homomorphisms, J. Math. Anal. Appl., 263 (2001), 580–599. https://doi.org/10.1006/jmaa.2001.7637 doi: 10.1006/jmaa.2001.7637
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(423) PDF downloads(62) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog