Research article Special Issues

Qualitative analysis and traveling wave solutions of the (3+1)-dimensional Kadomtsev-Petviashvili-Sawada-Kotera-Ramani equation with conformable fractional derivative

  • Received: 06 March 2025 Revised: 09 May 2025 Accepted: 05 June 2025 Published: 13 June 2025
  • This study aims to investigate the qualitative behavior analysis and traveling wave solutions of the (3+1)-dimensional Kadomtsev-Petviashvili-Sawada-Kotera-Ramani equation with conformable fractional derivative. The equation serves as a prominent physics-based mathematical model with numerous practical uses. To analyze the studied equation, we convert it into an ordinary differential equation via traveling wave transformation and then apply the polynomial trial method to deduce its trial equation. Subsequently, the equation with periodically excited perturbation is analyzed using phase trajectory diagrams, bifurcation diagrams, and Lyapunov exponents. Additionally, by utilizing a polynomial complete discrimination system, we derive trigonometric, hyperbolic, and Jacobi elliptic function solutions, some of which are visually represented through figures. These findings enhance the theoretical understanding of the (3+1)-dimensional Kadomtsev-Petviashvili-Sawada-Kotera-Ramani equation with conformable fractional derivative and contribute to the study of nonlinear wave phenomena.

    Citation: Shan Zhao, Jun Feng. Qualitative analysis and traveling wave solutions of the (3+1)-dimensional Kadomtsev-Petviashvili-Sawada-Kotera-Ramani equation with conformable fractional derivative[J]. Electronic Research Archive, 2025, 33(6): 3716-3732. doi: 10.3934/era.2025165

    Related Papers:

  • This study aims to investigate the qualitative behavior analysis and traveling wave solutions of the (3+1)-dimensional Kadomtsev-Petviashvili-Sawada-Kotera-Ramani equation with conformable fractional derivative. The equation serves as a prominent physics-based mathematical model with numerous practical uses. To analyze the studied equation, we convert it into an ordinary differential equation via traveling wave transformation and then apply the polynomial trial method to deduce its trial equation. Subsequently, the equation with periodically excited perturbation is analyzed using phase trajectory diagrams, bifurcation diagrams, and Lyapunov exponents. Additionally, by utilizing a polynomial complete discrimination system, we derive trigonometric, hyperbolic, and Jacobi elliptic function solutions, some of which are visually represented through figures. These findings enhance the theoretical understanding of the (3+1)-dimensional Kadomtsev-Petviashvili-Sawada-Kotera-Ramani equation with conformable fractional derivative and contribute to the study of nonlinear wave phenomena.



    加载中


    [1] X. Blase, I. Duchemin, D. Jacquemin, P. Loos, The Bethe-Salpeter equation formalism: From physics to chemistry, J. Phys. Chem. Lett., 11 (2020), 7371–7382. https://doi.org/10.1021/acs.jpclett.0c01875 doi: 10.1021/acs.jpclett.0c01875
    [2] J. Singh, D. Kumar, D. Baleanu, On the analysis of chemical kinetics system pertaining to a fractional derivative with Mittag-Leffler type kernel, Chaos, 27 (2017), 103113. https://doi.org/10.1063/1.4995032 doi: 10.1063/1.4995032
    [3] A. P. Selvam, V. Govindaraj, Controllability of fractional dynamical systems having multiple delays in control with $\psi$-Caputo fractional derivative, Math. Methods Appl. Sci., 47 (2024), 2177–2189. https://doi.org/10.1002/mma.9740 doi: 10.1002/mma.9740
    [4] M. Caputo, Linear model of dissipation whose Q is almost frequency independent-Ⅱ, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
    [5] I. Podlubny, Fractional Differential Equations, Academic Press, 1999.
    [6] R. Singh, J. Mishra, V. K. Gupta, Dynamical analysis of a Tumor Growth model under the effect of fractal fractional Caputo-Fabrizio derivative, Int. J. Math. Comput. Eng., 1 (2023), 115–126. https://doi.org/10.2478/ijmce-2023-0009 doi: 10.2478/ijmce-2023-0009
    [7] R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1–77. https://doi.org/10.1016/S0370-1573(00)00070-3 doi: 10.1016/S0370-1573(00)00070-3
    [8] J. A. T. Machado, The bouncing ball and the Grünwald-Letnikov definition of fractional derivative, Fract. Calc. Appl. Anal., 24 (2021), 1003–1014. https://doi.org/10.1515/fca-2021-0043 doi: 10.1515/fca-2021-0043
    [9] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, preprint, arXiv: 1602.03408.
    [10] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [11] M. Ozisik, A. Secer, M. Bayram, Obtaining analytical solutions of (2+1)-dimensional nonlinear Zoomeron equation by using modified F-expansion and modified generalized Kudryashov methods, Eng. Comput., 41 (2024), 1105–1120. https://doi.org/10.1108/EC-10-2023-0688 doi: 10.1108/EC-10-2023-0688
    [12] L. Qing, X. Li, Meshless analysis of fractional diffusion-wave equations by generalized finite difference method, Appl. Math. Lett., 157 (2024), 109204. https://doi.org/10.1016/j.aml.2024.109204 doi: 10.1016/j.aml.2024.109204
    [13] F. Batool, M. S. Suleman, U. Demirbilek, H. Rezazadeh, K. M. Khedher, S. Alsulamy, el at., Studying the impacts of M-fractional and beta derivatives on the nonlinear fractional model, Opt. Quantum Electron., 56 (2024), 164. https://doi.org/10.1007/s11082-023-05634-7 doi: 10.1007/s11082-023-05634-7
    [14] Z. Li, Optical solutions of the nonlinear Kodama equation with the M-Truncated derivative via the extended $(G'/G)$-expansion method, Fractal Fract., 9 (2025), 300. https://doi.org/10.3390/fractalfract9050300 doi: 10.3390/fractalfract9050300
    [15] G. Akram, M. Sadaf, S. Arshed, R. Latif, M. Inc, A. S. M. Alzaidi, Exact traveling wave solutions of (2+1)-dimensional extended Calogero-Bogoyavlenskii-Schiff equation using extended trial equation method and modified auxiliary equation method, Opt. Quantum Electron., 56 (2024), 424. https://doi.org/10.1007/s11082-023-05900-8 doi: 10.1007/s11082-023-05900-8
    [16] S. Zhao, Z. Li, Bifurcation, chaotic behavior and traveling wave solutions of the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony equation, Front. Phys., 13 (2025), 1502570. https://doi.org/10.3389/fphy.2025.1502570 doi: 10.3389/fphy.2025.1502570
    [17] U. Younas, J. Muhammad, N. Nasreen, A. Khan, T. Abdeljawad, On the comparative analysis for the fractional solitary wave profiles to the recently developed nonlinear system, Ain Shams Eng. J., 15 (2024), 102971. https://doi.org/10.1016/j.asej.2024.102971 doi: 10.1016/j.asej.2024.102971
    [18] H. F. Ismael, T. A. Sulaiman, U. Younas, H. R. Nabi, On the autonomous multiple wave solutions and hybrid phenomena to a (3+1)-dimensional Boussinesq-type equation in fluid mediums, Chaos Solitons Fractals, 187 (2024), 115374. https://doi.org/10.1016/j.chaos.2024.115374 doi: 10.1016/j.chaos.2024.115374
    [19] B. B. Kadomtsev, V. I. Petviashvili, On the stability of solitary waves in weakly dispersive media, Dokl. Akad. Nauk SSSR, 192 (1970), 753–756.
    [20] P. Ma, S. Tian, T. Zhang, X. Zhang, On Lie symmetries, exact solutions and integrability to the KdV-Sawada-Kotera-Ramani equation, Eur. Phys. J. Plus, 131 (2016), 98. https://doi.org/10.1140/epjp/i2016-16098-2 doi: 10.1140/epjp/i2016-16098-2
    [21] A. Ramani, Inverse scattering, ordinary differential equations of Painlevé type and Hirotas bilinear formalism, Ann. N. Y. Acad. Sci., 373 (1981), 54–67. https://doi.org/10.1111/j.1749-6632.1981.tb51131.x doi: 10.1111/j.1749-6632.1981.tb51131.x
    [22] K. Sawada, T. Kotera, A method for finding N-soliton solutions of the KdV equation and KdV-like equation, Prog. Theor. Phys., 51 (1974), 1355–1367. https://doi.org/10.1143/PTP.51.1355 doi: 10.1143/PTP.51.1355
    [23] B. Guo, Lax integrability and soliton solutions of the (2+1)-dimensional Kadomtsev-Petviashvili-Sawada-Kotera-Ramani equation, Front. Phys., 10 (2022), 1067405. https://doi.org/10.3389/fphy.2022.1067405 doi: 10.3389/fphy.2022.1067405
    [24] A. Wazwaz, M. A. Hammad, A. O. Al-Ghamdi, M. H. Alshehri, S. A. El-Tantawy, New (3+1)-Dimensional Kadomtsev-Petviashvili-Sawada-Kotera-Ramani equation: multiple-soliton and lump solutions, Mathematics, 11 (2023), 3395. https://doi.org/10.3390/math11153395 doi: 10.3390/math11153395
    [25] M. Şenol, M. O. Erol, F. M. Çelik, N. Das, Dynamical investigation of the new (3+1)-dimensional Kadomtsev-Petviashvili-Sawada-Kotera-Ramani equation with conformable fractional derivative, Mod. Phys. Lett. B, 39 (2025), 2550110. https://doi.org/10.1142/S0217984925501106 doi: 10.1142/S0217984925501106
    [26] Y. Gu, L. Peng, Z. Huang, Y. Lai, Soliton, breather, lump, interaction solutions and chaotic behavior for the (2+1)-dimensional KPSKR equation, Chaos Solitons Fractals, 187 (2024), 115351. https://doi.org/10.1016/j.chaos.2024.115351 doi: 10.1016/j.chaos.2024.115351
    [27] S. Althobaiti, R. I. Nuruddeen, A. Y. Magaji, J. F. Gomez-Aguilar, New revelations and extensional study on the recent sixth-order 3D Kadomtsev-Petviashvili-Sawada-Kotera-Ramani equation, Opt. Quantum Electron., 56 (2024), 820. https://doi.org/10.1007/s11082-024-06424-5 doi: 10.1007/s11082-024-06424-5
    [28] H. Ma, N. Su, A. P. Deng, Hybrid solutions and nonlinear transformed waves for the (3+1)-dimensional Kadomtsev-Petviashvili-Sawada-Kotera-Ramani equation, Mod. Phys. Lett. B, 39 (2025), 2550116. https://doi.org/10.1142/S0217984925501167 doi: 10.1142/S0217984925501167
    [29] M. Qasim, F. Yao, M. Z. Baber, U. Younas, Investigating the higher dimensional Kadomtsev-Petviashvili-Sawada-Kotera-Ramani equation: exploring the modulation instability, Jacobi elliptic and soliton solutions, Phys. Scr., 100 (2025), 025215. https://doi.org/10.1088/1402-4896/ada20c doi: 10.1088/1402-4896/ada20c
    [30] S. Zhao, Multiple solutions and dynamical behavior of the periodically excited beta-fractional generalized KdV-ZK system, Phys. Scr., 100 (2025), 045244. https://doi.org/10.1088/1402-4896/adc20c doi: 10.1088/1402-4896/adc20c
    [31] C. Liu, Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations, Comput. Phys. Commun., 181 (2010), 317–324. https://doi.org/10.1016/j.cpc.2009.10.006 doi: 10.1016/j.cpc.2009.10.006
    [32] J. Li, H. Dai, On the Study of Singular Nonlinear Traveling Wave Equations: Dynamical System Approach, Science Press, 2007.
    [33] M. Şenol, M. Gençyiğit, M. E. Koksal, S. Qureshi, New analytical and numerical solutions to the (2+1)-dimensional conformable cpKP-BKP equation arising in fluid dynamics, plasma physics, and nonlinear optics, Opt. Quantum Electron., 56 (2024), 352. https://doi.org/10.1007/s11082-023-05935-x doi: 10.1007/s11082-023-05935-x
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(686) PDF downloads(44) Cited by(0)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog