In this paper, we establish the existence of two positive solutions for a discrete mean curvature problem with Dirichlet boundary value conditions. The approach is based on a two-critical-point theorem. Our main result extends an existing conclusion in the literature. Moreover, three examples are presented to illustrate the validity and feasibility.
Citation: Liqun Jiang, Lin Zou, Xiaoyan Chen. Two positive solutions of a second order nonlinear difference equation involving the mean curvature operator[J]. Electronic Research Archive, 2025, 33(6): 3699-3715. doi: 10.3934/era.2025164
In this paper, we establish the existence of two positive solutions for a discrete mean curvature problem with Dirichlet boundary value conditions. The approach is based on a two-critical-point theorem. Our main result extends an existing conclusion in the literature. Moreover, three examples are presented to illustrate the validity and feasibility.
| [1] |
D. Li, Y. Long, Existence and nonexistence of periodic solutions for a class of fourth-order partial difference equations, J. Math., 2025 (2025), 2982321. https://doi.org/10.1155/jom/2982321 doi: 10.1155/jom/2982321
|
| [2] |
J. Yu, J. Li, Discrete-time models for interactive wild and transgenic sterile mosquitoes, J. Differ. Equations Appl., 30 (2024), 1590–1609. https://doi.org/10.1080/10236198.2024.2325485 doi: 10.1080/10236198.2024.2325485
|
| [3] |
J. Mawhin, Periodic solutions of second order nonlinear difference systems with $\phi$-Laplacian: A variational approach, Nonlinear Anal., 75 (2012), 4672–4687. https://doi.org/10.1016/j.na.2011.11.018 doi: 10.1016/j.na.2011.11.018
|
| [4] |
S. Cano-Casanova, J. López-Gómez, K. Takimoto, A quasilinear parabolic perturbation of the linear heat equation, J. Differ. Equations, 252 (2012), 323–343. https://doi.org/10.1016/j.jde.2011.09.018 doi: 10.1016/j.jde.2011.09.018
|
| [5] |
D. Bonheure, P. Habets, F. Obersnel, P. Omari, Classical and non-classical solutions of a prescribed curvature equation, J. Differ. Equations, 243 (2007), 208–237. https://doi.org/10.1016/j.jde.2007.05.031 doi: 10.1016/j.jde.2007.05.031
|
| [6] |
Y. Lu, R. Ma, Existence and multiplicity of positive solutions for one-dimensional prescribled mean curvature equations, Boundary Value Probl., 2014 (2014), 120. https://doi.org/10.1186/1687-2770-2014-120 doi: 10.1186/1687-2770-2014-120
|
| [7] |
R. P. Agarwal, K. Perera, D. O'Regan, Multiple positive solutions of singular and nonsingular discrete problems via variational methods, Nonlinear Anal., 58 (2004), 69–73. https://doi.org/10.1016/j.na.2003.11.012 doi: 10.1016/j.na.2003.11.012
|
| [8] |
G. Bonanno, P. Candito, G. D'Aguì, Variational methods on finite dimensional Banach spaces and discrete problems, Adv. Nonlinear Stud., 14 (2014), 915–939. https://doi.org/10.1515/ans-2014-0406 doi: 10.1515/ans-2014-0406
|
| [9] |
G. Bonanno, P. Jebelean, C. Serban. Surperlinear discrete problems, Appl. Math. Lett., 52 (2016), 162–168. https://doi.org/10.1016/j.aml.2015.09.005 doi: 10.1016/j.aml.2015.09.005
|
| [10] |
Z. Zhou, J. Ling, Infinitely many positive solutions for a discrete two point nonlinear boundary value problem with $\phi_c$-Laplacian, Appl. Math. Lett., 91 (2019), 28–34. https://doi.org/10.1016/j.aml.2018.11.016 doi: 10.1016/j.aml.2018.11.016
|
| [11] |
J. Ling, Z. Zhou, Positive solutions of the discrete Dirichlet problem involving the mean curature operator, Open Math., 17 (2019), 1055–1064. https://doi.org/10.1515/math-2019-0081 doi: 10.1515/math-2019-0081
|
| [12] |
Y. Chen, Z. Zhou, Existence of three solutions for a nonlinear discrete boundary value problem with $\phi_c$-Laplacian, Symmetry, 12 (2020), 1839. https://doi.org/10.3390/sym12111839 doi: 10.3390/sym12111839
|
| [13] |
G. Bonanno, G. D'Aguì, Two non-zero solutions for elliptic Dirichlet problems, Z. Anal. Anwend., 35 (2016), 449–464. https://doi.org/10.4171/ZAA/1573 doi: 10.4171/ZAA/1573
|
| [14] |
G. D'Aguì, J. Mawhin, A. Sciammetta, Positive solutions for a discrete two point nonlinear boundary value problem with p-Laplacian, J. Math. Anal. Appl., 447 (2017), 383–397. https://doi.org/10.1016/j.jmaa.2016.10.023 doi: 10.1016/j.jmaa.2016.10.023
|
| [15] |
G. D'Aguì, A. Sciammetta, E. Tornatore, Two non-zero solutions for Sturm–Liouville equations with mixed boundary conditions, Nonlinear Anal., 47 (2019), 324–331. https://doi.org/10.1016/j.nonrwa.2018.11.002 doi: 10.1016/j.nonrwa.2018.11.002
|
| [16] |
P. Candito, G. D'Aguì, R. Livrea, Two positive solutions for a nonlinear parameter-depending algebraic system, Dolomites Res. Notes Approximation, 14 (2021), 10–17. https://doi.org/10.14658/pupj-drna-2021-2-3 doi: 10.14658/pupj-drna-2021-2-3
|
| [17] | Z. M. Guo, J. S. Yu, Periodic and subharmonic solutions for second-order superlinear difference equations, Sci. China Math., 46 (2003), 506–515. |
| [18] |
X. H. Tang, Non-Nehari manifold method for periodic discrete superlinear Schrödinger equation, Acta Math. Sin., 32 (2016), 463–473. https://doi.org/10.1007/s10114-016-4262-8 doi: 10.1007/s10114-016-4262-8
|
| [19] |
H. P. Shi, Periodic and subharmonic solutions for second-order nonlinear difference equations, J. Appl. Math. Comput., 48 (2015), 157–171. https://doi.org/10.1007/s12190-014-0796-z doi: 10.1007/s12190-014-0796-z
|
| [20] |
G. H. Lin, Z. Zhou, Homoclinic solutions of discrete $\phi$-Laplacian equations with mixed nonlinearities, Commun. Pur. Appl. Anal., 17 (2018), 1723–1747. https://doi.org/10.3934/cpaa.2018082 doi: 10.3934/cpaa.2018082
|
| [21] | R. P. Agarwal, Difference Equations and Inequalities: Theory, Methods, and Applications, 1st edition, CRC Press, Boca Raton, 2000. https://doi.org/10.1201/9781420027020 |
| [22] | W. G. Kelly, A. C. Peterson, Difference Equations: An Introduction with Applications, 2nd edition, Academic Press, San Diego, 2001. |
| [23] |
L. Jiang, Z. Zhou, Three solutions to Dirichlet boundary value problems for p-Laplacian difference equations, Adv. Differ. Equations, 2008 (2007), 345916. https://doi.org/10.1155/2008/345916 doi: 10.1155/2008/345916
|