Research article Special Issues

Fixed-time synchronization of time-delayed fuzzy memristor-based neural networks: A special exponential function method

  • Received: 19 March 2025 Revised: 08 May 2025 Accepted: 20 May 2025 Published: 09 June 2025
  • This research focuses on controlling fixed-time synchronization (FixTS) in a time-delayed fuzzy memristor-based neural network (TDFMNN). To achieve FixTS and improve convergence speed, a discontinuous state feedback controller (StFC) incorporating a unique exponential function is developed for the memristor-based neural network (MNN) drive-response system (DRS). The FixTS is analyzed using the indefinite derivative Lyapunov function approach. The proposed TDFMNN incorporates multiple factors, such as memristor, time-variation of coefficients, time-delay, and fuzzy elements, making the model more practical compared to existing studies. The StFC is designed using the fixed-time stability (FixS) theory of the exponential function, which requires few parameters, thereby simplifying controller design and implementation. Numerical simulations are conducted to evaluate the performance of the proposed control strategy on two-dimensional and three-dimensional TDMNNs.

    Citation: Yan Chen, Ravie Chandren Muniyandi, Shahnorbanun Sahran, Zuowei Cai. Fixed-time synchronization of time-delayed fuzzy memristor-based neural networks: A special exponential function method[J]. Electronic Research Archive, 2025, 33(6): 3517-3542. doi: 10.3934/era.2025156

    Related Papers:

  • This research focuses on controlling fixed-time synchronization (FixTS) in a time-delayed fuzzy memristor-based neural network (TDFMNN). To achieve FixTS and improve convergence speed, a discontinuous state feedback controller (StFC) incorporating a unique exponential function is developed for the memristor-based neural network (MNN) drive-response system (DRS). The FixTS is analyzed using the indefinite derivative Lyapunov function approach. The proposed TDFMNN incorporates multiple factors, such as memristor, time-variation of coefficients, time-delay, and fuzzy elements, making the model more practical compared to existing studies. The StFC is designed using the fixed-time stability (FixS) theory of the exponential function, which requires few parameters, thereby simplifying controller design and implementation. Numerical simulations are conducted to evaluate the performance of the proposed control strategy on two-dimensional and three-dimensional TDMNNs.



    加载中


    [1] L. Chua, Memristor-The missing circuit element, IEEE Trans. Circuit Theory, 18 (1971), 507–519. https://doi.org/10.1109/TCT.1971.1083337 doi: 10.1109/TCT.1971.1083337
    [2] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, The missing memristor found, Nature, 453 (2008), 80–83. https://doi.org/10.1038/nature06932
    [3] S. Wang, L. Song, W. Chen, G. Wang, E. Hao, C. Li, et al., Memristor‐based intelligent human‐like neural computing, Adv. Electron. Mater., 9 (2023), 1065–1089. https://doi.org/10.1002/aelm.202200877 doi: 10.1002/aelm.202200877
    [4] S. P. Adhikari, C. Yang, H. Kim, L. O. Chua, Memristor bridge synapse-based neural network and its learning, IEEE Trans. Neural Networks Learn. Syst., 23 (2012), 1426–1435. https://doi.org/10.1109/TNNLS.2012.2204770 doi: 10.1109/TNNLS.2012.2204770
    [5] H. Sang, Y. Zhao, P. Wang, Y. Wang, S. Yu, G. M. Dimirovski, Finite-time peak-to-peak analysis for switched generalized neural networks comprised of finite-time unstable subnetworks, Chaos, Solitons Fractals, 172 (2023), 113555. https://doi.org/10.1016/j.chaos.2023.113555 doi: 10.1016/j.chaos.2023.113555
    [6] X. W. Zhang, H. N. Wu, Mixed $H2/H_{\infty}$ stabilization design for memristive neural networks, Neurocomputing, 361 (2024), 92–99. https://doi.org/10.1016/j.neucom.2019.07.002 doi: 10.1016/j.neucom.2019.07.002
    [7] I. Ahmad, M. Shafiq, B. Naderi, Finite-time synchronization of four-dimensional memristor-based chaotic oscillator and applied to secure communication systems, Franklin Open, 3 (2023), 100015. https://doi.org/10.1016/j.fraope.2023.100015 doi: 10.1016/j.fraope.2023.100015
    [8] J. Zhang, X. Ma, Y. Li, Q. Gan, C. Wang, Synchronization in fixed/preassigned-time of delayed fully quaternion-valued memristive neural networks via non-separation method, Commun. Nonlinear Sci. Numer. Simul., 113 (2022), 106581. https://doi.org/10.1016/j.cnsns.2022.106581 doi: 10.1016/j.cnsns.2022.106581
    [9] Y. Cao, S. Wang, Z. Guo, T. Huang, S. Wen, Stabilization of memristive neural networks with mixed time-varying delays via continuous/periodic event-based control, J. Franklin Inst., 357 (2020), 7122–7138. https://doi.org/10.1016/j.jfranklin.2020.05.040 doi: 10.1016/j.jfranklin.2020.05.040
    [10] H. B. Zeng, Y. J. Chen, Y. He, X. M. Zhang, A delay-derivative-dependent switched system model method for stability analysis of linear systems with time-varying delay, Automatica, 175 (2025), 112183. https://doi.org/10.1016/j.automatica.2025.112183 doi: 10.1016/j.automatica.2025.112183
    [11] Y. Chen, C. Lu, X. M. Zhang, Allowable delay set flexible fragmentation approach to passivity analysis of delayed neural networks, Neurocomputing, 629 (2025), 129730. https://doi.org/10.1016/j.neucom.2025.129730 doi: 10.1016/j.neucom.2025.129730
    [12] X. Yao, X. Liu, S. Zhong, Exponential stability and synchronization of Memristor-based fractional-order fuzzy cellular neural networks with multiple delays, Neurocomputing, 419 (2021), 239–250. https://doi.org/10.1016/j.neucom.2020.08.057 doi: 10.1016/j.neucom.2020.08.057
    [13] K. Ding, Q. Zhu, Impulsive method to reliable sampled-data control for uncertain fractional-order memristive neural networks with stochastic sensor faults and its applications, Nonlinear Dyn., 100 (2020), 2595–2608. https://doi.org/10.1007/s11071-020-05670-y doi: 10.1007/s11071-020-05670-y
    [14] G. Zhang, J. Qin, Y. Zhang, G. Gong, Z. Y. Xiong, X. Ma, et al., Functional materials for memristor‐based reservoir computing: Dynamics and applications, Adv. Funct. Mater., 33 (2023), 2302929. https://doi.org/10.1002/adfm.202302929 doi: 10.1002/adfm.202302929
    [15] Q. Gan, L. Li, J. Yang, Y. Qin, M. Meng, Improved results on fixed-/preassigned-time synchronization for memristive complex-valued neural networks, IEEE Trans. Neural Networks Learn. Syst., 33 (2022), 5542–5556. https://doi.org/10.1109/TNNLS.2021.3070966 doi: 10.1109/TNNLS.2021.3070966
    [16] W. Wang, Y. Sun, M. Yuan, Z. Wang, J. Cheng, D. Fan, et al., Projective synchronization of memristive multidirectional associative memory neural networks via self-triggered impulsive control and its application to image protection, Chaos, Solitons Fractals, 150 (2021), 150. https://doi.org/10.1016/j.chaos.2021.111110 doi: 10.1016/j.chaos.2021.111110
    [17] S. Gong, Z. Guo, S. Wen, T. Huang, Finite-time and fixed-time synchronization of coupled memristive neural networks with time delay, IEEE Trans. Cybern., 51 (2021), 2944–2955. https://doi.org/10.1109/TCYB.2019.2953236 doi: 10.1109/TCYB.2019.2953236
    [18] X. Wu, S. Liu, H. Wang, Asymptotic stability and synchronization of fractional delayed memristive neural networks with algebraic constraints, Commun. Nonlinear Sci. Numer. Simul., 114 (2022), 106694. https://doi.org/10.1016/j.cnsns.2022.106694 doi: 10.1016/j.cnsns.2022.106694
    [19] L. Wang, C. K. Zhang, Exponential synchronization of memristor-based competitive neural networks with reaction-diffusions and infinite distributed delays, IEEE Trans. Neural Networks Learn. Syst., 35 (2022), 745–758. https://doi.org/10.1109/TNNLS.2022.3176887 doi: 10.1109/TNNLS.2022.3176887
    [20] Z. Cai, L. Huang, Finite-time stabilization of delayed memristive neural networks: Discontinuous state-feedback and adaptive control approach, IEEE Trans. Neural Networks Learn. Syst., 29 (2018), 856–868. https://doi.org/10.1109/TNNLS.2017.2651023 doi: 10.1109/TNNLS.2017.2651023
    [21] T. Jia, X. Chen, F. Zhao, J. Cao, J. Qiu, Adaptive fixed-time synchronization of stochastic memristor-based neural networks with discontinuous activations and mixed delays, J. Franklin Inst., 360 (2023), 3364–3388. https://doi.org/10.1016/j.jfranklin.2022.11.006 doi: 10.1016/j.jfranklin.2022.11.006
    [22] A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Autom. Control, 57 (2012), 2106–2110. https://doi.org/10.1109/TAC.2011.2179869 doi: 10.1109/TAC.2011.2179869
    [23] Q. Liu, H. Yan, H. Zhang, X. Zhan, K. Shi, Intermittent exponential synchronization for memristor-based neural networks with inertial items and mixed time-varying delays, IEEE Trans. Syst. Man Cybern.: Syst., 53 (2022), 2925–2937. https://doi.org/10.1109/TSMC.2022.3220979 doi: 10.1109/TSMC.2022.3220979
    [24] F. Setoudeh, M. M. Dezhdar, M. Najafi, Nonlinear analysis and chaos synchronization of a memristive-based chaotic system using adaptive control technique in noisy environments, Chaos, Solitons Fractals, 164 (2022), 112710. https://doi.org/10.1016/j.chaos.2022.112710 doi: 10.1016/j.chaos.2022.112710
    [25] F. Wu, Y. Huang, Finite-time synchronization and $H_{\infty}$ synchronization of coupled complex-valued memristive neural networks with and without parameter uncertainty, Neurocomputing, 469 (2022), 163–179. https://doi.org/10.1016/j.neucom.2021.10.067 doi: 10.1016/j.neucom.2021.10.067
    [26] F. Merrikh-Bayat, F. Merrikh-Bayat, S. B. Shouraki The neuro-fuzzy computing system with the capacity of implementation on a memristor crossbar and optimization-free hardware training, IEEE Trans. Fuzzy Syst., 22 (2014), 1272–1287. https://doi.org/10.1109/TFUZZ.2013.2290140 doi: 10.1109/TFUZZ.2013.2290140
    [27] L. Duan, H. Wei, L. Huang, Finite-time synchronization of delayed fuzzy cellular neural networks with discontinuous activations, Fuzzy Sets Syst., 361 (2019), 56–70. https://doi.org/10.1016/j.fss.2018.04.017 doi: 10.1016/j.fss.2018.04.017
    [28] F. Kong, Q. Zhu, R. Sakthivel, Finite-time and fixed-time synchronization control of fuzzy Cohen-Grossberg neural networks, Fuzzy Sets Syst., 394 (2020), 87–109. https://doi.org/10.1016/j.fss.2019.12.002 doi: 10.1016/j.fss.2019.12.002
    [29] M. S. Aslam, T. Radhika, A. Chandrasekar, Q. Zhu, Improved event-triggered-based output tracking for a class of delayed networked T–S fuzzy systems, Int. J. Fuzzy Syst., 26 (2024), 1247–1260. https://doi.org/10.1007/s40815-023-01664-1 doi: 10.1007/s40815-023-01664-1
    [30] F. Liu, W. Meng, R. Lu, Anti-synchronization of discrete-time fuzzy memristive neural networks via impulse sampled-data communication, IEEE Trans. Cybern., 53 (2023), 4122–4133. https://doi.org/10.1109/TCYB.2021.3128903 \newpage doi: 10.1109/TCYB.2021.3128903
    [31] C. Xu, M. Jiang, J. Hu, Fixed-time synchronization of complex-valued memristive competitive neural networks based on two novel fixed-time stability theorems, Neural Comput. Appl., 35 (2023), 22605–22620. https://doi.org/10.1007/s00521-023-08874-6 doi: 10.1007/s00521-023-08874-6
    [32] M. Zheng, L. Li, H. Peng, J. Xiao, Y. Yang, Y. Zhang, Fixed-time synchronization of complex-valued memristive competitive neural networks based on two novel fixed-time stability theorems, IEEE Access, 6 (2018), 12085–12102. https://doi.org/ 10.1109/ACCESS.2018.2805183 doi: 10.1109/ACCESS.2018.2805183
    [33] P. Wang, X. Li, J. Lu, J. Lou, Fixed-time synchronization of stochastic complex-valued fuzzy neural networks with memristor and proportional delays, Neural Process. Lett., 55 (2023), 8465–8481. https://doi.org/10.1007/s11063-023-11320-2 doi: 10.1007/s11063-023-11320-2
    [34] J. Chen, Z. Zeng, P. Jiang, On the periodic dynamics of memristor-based neural networks with time-varying delays, Inf. Sci., 279 (2019), 358–373. https://doi.org/10.1016/j.ins.2014.03.124 doi: 10.1016/j.ins.2014.03.124
    [35] J. Li, H. Jiang, C. Hu, A. Alsaedi, Finite/fixed-time synchronization control of coupled memristive neural networks, J. Franklin Inst., 356 (2019), 9928–9952. https://doi.org/10.1016/j.jfranklin.2019.09.015 doi: 10.1016/j.jfranklin.2019.09.015
    [36] Z. Cai, L. Huang, Z. Wang, Fixed/preassigned-time stability of time-varying nonlinear system with discontinuity: Application to Chua's circuit, IEEE Trans. Circuits Syst. Ⅱ Express Briefs, 69 (2022), 2987–2991. https://doi.org/10.1109/TCSII.2022.3166776 doi: 10.1109/TCSII.2022.3166776
    [37] Z. Cai, L. Huang, Z. Wang, Novel fixed-time stability criteria for discontinuous nonautonomous systems: Lyapunov method with indefinite derivative, IEEE Trans. Cybern., 52 (2022), 4286–4299. https://doi.org/10.1109/TCYB.2020.3025754 doi: 10.1109/TCYB.2020.3025754
    [38] F. H. Clarke, Y. S. Ledyaev, R. J. Stern, P. R. Wolenski, et al., Nonsmooth Analysis and Control Theory, Springer-Verlag, New York, 1990.
    [39] T. Yang, L. B. Yang, The global stability of fuzzy cellular neural network, IEEE Trans. Circuits Syst. Ⅰ: Fundam. Theory Appl., 43 (1996), 880–883. https://doi.org/10.1109/81.538999 doi: 10.1109/81.538999
    [40] Q. Wang, L. Wang, W. Wen, Y. Li, G. Zhang, Dynamical analysis and preassigned-time intermittent control of memristive chaotic system via T–S fuzzy method, Chaos, 35 (2025), 023102. https://doi.org/10.1063/5.0221159 doi: 10.1063/5.0221159
    [41] X. Hu, L. Wang, C. K. Zhang, Y. He, Fixed-time synchronization of fuzzy complex dynamical networks with reaction-diffusion terms via intermittent pinning control, IEEE Trans. Fuzzy Syst., 52 (2024), 2307–2317. https://doi.org/10.1109/TFUZZ.2024.3349599 doi: 10.1109/TFUZZ.2024.3349599
    [42] Y. Cao, Z. Guo, T. Huang, S. Wen, Global exponential synchronization of delayed memristive neural networks with reaction–diffusion terms, Neural Networks, 123 (2020), 70–81. https://doi.org/10.1016/j.neunet.2019.11.008 doi: 10.1016/j.neunet.2019.11.008
    [43] L. Chen, M. Gong, Y. Zhao, X. Liu, Finite-time synchronization for stochastic fractional-order memristive BAM neural networks with multiple delays, Fractal Fract., 7 (2023), 678. https://doi.org/10.3390/fractalfract7090678 doi: 10.3390/fractalfract7090678
    [44] Z. Lu, Q. Ge, Y. Li, J. Hu, Finite-time synchronization of memristor-based recurrent neural networks with inertial items and mixed delays, IEEE Trans. Syst. Man Cybern, Syst., 51 (2021), 2701–2711. https://doi.org/10.1109/TSMC.2019.2916073 doi: 10.1109/TSMC.2019.2916073
    [45] S. Shao, X. Liu, J. Cao, Prespecified-time synchronization of switched coupled neural networks via smooth controllers, Neural Networks, 133 (2021), 32–39. https://doi.org/10.1016/j.neunet.2020.10.007 doi: 10.1016/j.neunet.2020.10.007
    [46] Q. Wang, H. Zhao, A. Liu, L. Li, S. Niu, C. Chen, Predefined-time synchronization of stochastic memristor-based bidirectional associative memory neural networks with time-varying delays, IEEE Trans. Cognit. Dev. Syst., 14 (2022), 1584–1593. https://doi.org/10.1109/TCDS.2021.3126759 doi: 10.1109/TCDS.2021.3126759
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(853) PDF downloads(58) Cited by(0)

Article outline

Figures and Tables

Figures(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog