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Abstract: This research focuses on controlling fixed-time synchronization (FixTS) in a time-delayed
fuzzy memristor-based neural network (TDFMNN). To achieve FixTS and improve convergence speed, a
discontinuous state feedback controller (StFC) incorporating a unique exponential function is developed
for the memristor-based neural network (MNN) drive-response system (DRS). The FixTS is analyzed
using the indefinite derivative Lyapunov function approach. The proposed TDFMNN incorporates
multiple factors, such as memristor, time-variation of coeflicients, time-delay, and fuzzy elements,
making the model more practical compared to existing studies. The StFC is designed using the
fixed-time stability (FixS) theory of the exponential function, which requires few parameters, thereby
simplifying controller design and implementation. Numerical simulations are conducted to evaluate the
performance of the proposed control strategy on two-dimensional and three-dimensional TDMNNSs.

Keywords: fixed-time synchronization; fuzzy memristor-based neural network; special exponential
function method; state feedback controller; time-delay

1. Introduction

The memristor notion was initially developed by Chua et al. [1] in a study of circuit variables
symmetry and logic. However, it became popular in 2008, with the production of the first memristor
component in Hewlett-Packard Labs [2]. Memristor circuits demonstrate many important characteristics,
such as low power consumption, large memories, nano-scale structure, and non-volatility, making
them suitable for numerous applications, including volatile memory, secure communication, analog
circuits, image processing, and cryptography. Biological neural network systems inspire artificial
neural networks, which are crafted to replicate and simulate the brain’s neural structure and learning
mechanisms [3]. As the most suitable elements to simulate neuronal synapses [4], using memristors
in neural networks not only reduces hardware overhead, system size, and energy consumption, but
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also enhances computing speed [4]. This innovation, known as “memristor-based neural networks”,
outperforms traditional networks in speed, data storage, and performance across various applications [5].
MNN s are considered state-dependent nonlinear switching systems [6]. Investigating their dynamical
behavior is crucial for numerous engineering applications. The majority of the current studies focus on
stability and synchronization problems to facilitate the application of MNNs [7].

The phenomenon of time delay is unavoidable when studying real network systems [5]. The
occurrence of time delays is influenced by both the system’s current state and its previous state, which is
a more obvious feature in neural networks [8]. There are many reasons for the time delay phenomenon,
including the limited signal transmission time between neurons and the insufficient speed of actuators
in processing signals [9]. Time delay is one of the most difficult issues to deal with and is widely
present in the system, but difficult to eliminate. Therefore, the phenomenon of time delay has attracted
significant attention, and extensive research has been undertaken into the delay-dependent stability of
delayed systems. [10] proposes a delay-dependent switched system to analyze the stability of delayed
systems. The delay in this study [11] addresses the passivity issue in neural networks. This method
allows us to incorporate more delay information to construct a novel Lyapunov—Krasovskii functional.
Therefore, considering time lags is crucial when examining the dynamics of neural networks. This
makes the development of time-delay memristor-based neural network (TMNN) models highly relevant
for the dynamic analysis and control of MNNs [12]. The MNN model commonly includes a time-delay
term to account for the signal delay due to the effect of switching and the current impedance of the
circuit components [13]. The utilization of a TMNN often relies on its synchronization, multi-stability,
and other associated dynamic phenomena [14]. As a nonlinear system, the TMNN exhibits complex
nonlinear dynamic behaviors. The presence of time lags increases the likelihood of system instability,
thereby complicating the implementation of system synchronization and rendering the synchronization
process more challenging [15]. The synchronization ensures the interaction between the network nodes
and the eventual convergence of their dynamical behaviors to the same state [16].

The synchronization behavior of TMNNSs can be classified based on time taken to achieve the
synchronization into, infinite-time synchronization (InfTS), finite-time synchronization (FinTS), and
FixTS [17]. In the InfTS method, the time required to achieve synchronization cannot be estimated.
Notable examples of InfTS synchronization include asymptotic [18] and exponential synchronization
[19] of MNNs. However, in many situations, it is important to consider the control cost or time
required to achieve system synchronization. FinTS refers to the stability of the error state between
the DRS within a finite time. This consideration has led to the introduction of the FinTS method,
wherein the duration to reach the synchronization can be estimated [20]. The finite time represents
the maximum limit established by the estimated time function, which is determined by the system’s
initial states (InSts). It corresponds to a synchronization duration achievable within an estimated time
range. Nevertheless, the FinTS method is not appropriate for systems whose initial conditions are not
readily available [21]. The study by Polyakov [22] introduced a technique to determine if a system
can achieve FixS. FixTS, on the other hand, indicates that the system synchronizes within a finite time,
with the settling time being bounded concerning the state error, and this upper bound is independent
of the InSts of the error system. This technique paved the way for a method of stability analysis that
is not reliant on the system’s InSts. Therefore, the FixS analysis approach can be applied to FixTS
control method. The FixTS analysis method is a special form of FinTS that is not dependent on the
InSts of the system and produces a bounded synchronization time (SyTi). FixTS is of great importance
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and has numerous practical applications. Due to its strict guarantee on convergence time, FixTS offers
significant advantages in safety-critical, dynamically complex, or real-time demanding applications,
such as image encryption, aerospace, smart grids, and autonomous driving. However, the issue of FixTS
remains relatively immature with many queries requiring further exploration, especially the research on
FixTS application in TMNNS.

Recently, many studies considered the characteristics of time delay [23], oscillation [24], and
parameter uncertainties [25] to achieve more practical applications with MNNs. However, building an
accurate mathematical model representation of an actual engineering application involves a daunting
task, due to the fact that ignoring the system’s parameter uncertainties can produce adverse effects on
the system’s dynamics convergence and local stability. Fuzzy logic (FL), proposed by Lotfi Zadeh in
1965, was designed to handle problems involving uncertainty and ambiguity, making it well-suited for
nonlinear systems or those that are difficult to model precisely, such as human language or complex
control systems. Integrating memristors into FL systems has become a highly prominent research
frontier. On one hand, memristors provide compact, energy-efficient, and highly nonlinear components
that can physically implement fuzzy operators, store fuzzy rule weights, or emulate synaptic connections
in fuzzy neural networks (FNNs). On the other hand, embedding FL into memristive circuits enables
the realization of intelligent control strategies capable of addressing system uncertainties, parameter
variations, and environmental disturbances. Therefore, this integration opens up new avenues for
developing intelligent circuits and systems with enhanced learning, adaptability, and decision-making
capabilities, and it is regarded as a promising research direction in the fields of neuromorphic engineering,
intelligent control, and hardware-software co-design. The inclusion of fuzzy components enhances
the universality and practicality of research on the robust adaptive synchronization of the MNN [26].
This is achieved by addressing the nonlinear properties of the memristor and optimizing the parameter
design of the MNN. Therefore, the integration of fuzzy systems holds substantial value in exploring
the dynamic analysis of MNNs in the presence of parameter perturbations. Contrary to research on the
synchronization of FNNs [27-29] and MNNS, fewer studies have been done on fuzzy MNNs. Given
the importance of synchronization behavior, further research on the synchronization of FMNNS is
essential [30]. The quality of a control method can be assessed in terms of how quickly it can achieve
synchronization. The SyTi of asymptotic synchronization tends to infinity, while the SyTi of FinTS
has an upper bound. The FinTS control system may alter control settings in real-time according to the
calculated upper limit of the SyTi, enabling the system to quickly achieve synchronization. However,
since the upper bound of the SyTi required for FinTS is related to the InSts of the system, it imposes
considerable limitations in practical applications.

Compared with the FinTS technique, the convergence time upper limit of the FixTS approach is
solely dependent on the control parameters of the system and is independent of InSts. This independence
makes it more convenient for practical applications in production and daily life. Therefore, research on
the FixTS of TDFMNNs holds more practical significance. However, there is currently limited related
research in the literature [31-33], indicating an insufficient resolution to the TDFMNN problem. Most
existing FixTS methods involve complex convergence time estimation and extensive computation. This
gap motivates us to develop simpler, more effective, and diverse FixTS convergence time estimates. The
FixTS control of TDFMNNSs remains underexplored, prompting our research.

The innovation of this paper lies in the proposal of TDFMNNS that consider additional objective
factors, such as time-delay effects, fuzzy terms, and memristors. The FixS theory based on exponential
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functions is applied, involving fewer parameters, which makes the controller easier to design and
implement. A special exponential function term is introduced in the modified controller, enabling easier
realization of FixTS, with a simpler estimation formula for the convergence time.

This article tries to provide novel FixTS standards for controlling TDFMNNSs. The main contributions
of this work are summarized as below.

(i) Solved the FixTS problem of TDFMNNSs by designing a switching type discontinuous StFC. The
inclusion of a special exponential function term in the controller significantly differs from existing power
function form controllers, allowing for easier implementation and achieving FixTS more effectively.

(i1) Proposed the TDFMNN model, which integrates multiple factors including nonlinearity, time-
variation of coefficients, time-lag, and FL elements, thereby enhancing the model’s practicality compared
to previous studies [27,28, 34,35].

(iii) The StFC controller adopted in this paper utilizes the FixS theory of the exponential function,
requiring fewer parameters for controller design and implementation, thus simplifying the process.

(iv) Introduced a novel estimation formula for synchronization convergence time, which is simpler
and more practical compared to existing methods, facilitating a more accurate assessment of convergence
behaviour.

The structure of the article is as follows: Section 2 delves into the DRS, which are the models under
consideration. In addition, the study included the provision of definitions and assumptions, as well as
the introduction of valuable lemmas. Section 3 incorporates the FixS theory, and some FixTS criteria
and controller designs for TDFMNNs were proposed through rigorous mathematical proof. Section 4
introduces two numerical simulation examples. The fifth section provides a series of findings from this
article and proposes some future research work.

Notations: R represents the real field; R” consists of all n-dimensional real vectors; sign(-) is the sign
function; i, j € N = {1, 2, ...,n}; and co[E] is the convex closure of E. Let i, j € R", (x,y) be the inner
product of x and y, and 0V represent the generalized gradient of V.

2. Model description and preliminaries

Consider the TDFMNNs
d : n n n
0 = e+ Y ay OO + Y by () G~ ) + Y g,
j=1 j=1 Jj=1

n n n n (1)
+ /\ Tijvj + /\Dijﬁ(Xj(f—O')) + \/Hiﬂ:j(xj(t—O')) + \/Sijvj + I,
j=1 j=1

j=1 j=1

fori=1,2,...,n, where n represents the number of neural network units, c;(f) > 0 reflects the rate by
which the potentials will be reset to the equilibrium state in isolation, x;(f) represents the state variables
(StVas) connected to the ith neuron, F;(x;(1)), G;(x;j(t — 0)) and F;(x;(t — o)) denote the outputs, A
represent the fuzzy “AND” and \/ fuzzy “OR” operations, D;; and H;; represent elements of the fuzzy
feedback Min and Max templates, respectively, T;; and S;; denote the fuzzy feed-forward Min template
and Max template, respectively, the fuzzy feed-forward template is E;;, v; and /; are the input and bias,
respectively and the memristor-based weights a;;(x;(¢)) and b;;(x;(#)) can be defined as follows:
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g ol <,

a;j(xi(1)) = {Zl,-j, lx; ()] > r;, :
o By @l <

P = {lv?ij’ (O > 1, ?

where r; > 0 is a switching jump, and &;;, &;j, b;j, b;; are constants associated with memristors.

Lemma 2.1. (Refer to Corollary 1 of [36]). Assume that @ € ko, and let | > 0, 0 < g < 1 be given
constants. Suppose there exists a locally Lipschitz continuous and C-regular function V : R" — R, such
that V(0) = 0, and the following conditions are satisfied:

av
ar < —lexp (V) V'

The zero point of the equation remains stable at a constant time, and the convergence time is
estimated as I'(ty, xo) < ty + '™ ™M = %.
Lemma 2.2. (Chain Rule [37,38]). If V : R" — R is C- regular and x(t) : [ty, +o0) — R" has absolute
continuity, then

dV(x(r) dx(1)
a o, dt

Lemma 2.3. (Refer to [39]). Let x and X denote the states of system (1). Then, we can conclude that:

>, V() € OV(x(2)).

N\ DiFitxp) = )\ DT (%) < D IDIFi(x)) = Fi(%))
j=1 j=1 J=1

\/ HiFixe) = \/ HyF (5| < D HiIF50x) = FiE)I
j=1 j=1 j=1

To reach the conclusion of this article, the following conditions are considered.
(A1) The functions ¥; and G; satisfy F;(0) = G;(0) = 0,Yx,y € R, and we can find P; > 0, Q; >
0,j=1,2,...,nsatisfying
Pjlx =yl = [Fj(x) = F;()l,
Qjlx =yl 2 1G;(x) - G;)I. 4)
(A2) For any pair of distinct real numbers x and y, we can find L; > 0 and M; > 0O that satisfy the
following inequality:
|F (0l < Lj,
G (0] < M;. (5)

Utilizing the Filippov-framework theorem, it is deduced from (1) that
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dx;(1)
dt

€ —ci(Dxi(t) + " 80 [ay; (xi(e)| Fitxj(0) + 00 [byy (xie)| Gt = o) + Y Eygy
= = j=1
(6)
+ /\ Tijv; + /\ Dy Fi(xj(t = ) + v HyFi(xj(t = ) + \/ Syv;+ 1

j=1

where

aij, ri > |xi(1),
colay(x(O =4 |a, @], ri= @, (7)

dij, ri <|xi(l,

a. = min{&ij,éij}a ajj = max{aij,évlij},

1]

and

bij, 1> @l
éij’Bij]’ ri = x|, (8)
ijs ri < |xi (@),

co[b;j(xi(1)] =

b —m1n{b b} b —max{b b}

ijs ijs
For i, j € N, we can find a;;(¢) € co[a;;j(x;(?))] and B;;(?) € co[b;;(x;(1))] for a.e. t > 0 to make

dx;(1)
dt

= —c(xi(0) + ) ay(OF(xj(0) + Y Bi(DG,(xi(t = ) + > Eijy;
J=1 j=1 j=1
) h ] ; ©)
+ /\ T,'J'Vj + /\Dij?"j(xj(t - O')) + \/ Hij?"j(xj(t - O')) + \/Sijvj + 1.
j=1 j=1 j=1 j=1

Applying the drive-response synchronization principle and employing (1) as the drive system (DrSy),
the response system (ReSy) is constructed as

dyi(t) _

= {00 + Z ai; (i) Fi(y (1)) + Z bi; i) Gyt = 0)) + Z Eijv;

(10)
+ /\ Tijvj + /\D,‘j?’vj()/j(t - O')) + \/Hijfj(yj(t - O')) + \/Sijvj + 1+ I/tl‘(t),
=1 j=1 j=1 j=1

where u;(¢) is the proposed controller under development, while the rest of the parameters retain their
dynamic interpretations as in (1), and

a1 (u(D)) = {C:lij, (Dl < 1y, (1)

aij,  lyi®l > ri,
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~

bij, Ol < ri,
by =177 (12)
bij, lyi®| > r;.
From Eq (10), it can be deduced that with the implementation of the aforementioned principles:
d (1 n . n . n
20 ¢ —cimtn) + " @y (D] F) + T [y D] G100~ o + Y B,
t j=1 Jj=1 J=1
+ /\ Tijpv;+ /\ DiiFi(yj(t = o)) + \/ HF j(y;(t — o)) + \/ Sivj+ i + ui(2),
j=1 j=1 j=1 j=1
where
ajj, ri > |yl
cola; (O = {|a,aij|, i = yio, (14)
ajj, ri < yi(@l,
4 = min{&ij,&ij}a ajj = max{aij,évlij},
and
Bij, ri > |yl
Solbi (O = {| by Bif i = (o), (15)
Bij, ri < lyi(l,
lzij = min{[;ij,[;ij}, Eij = max{i?ij,lv?ij}-
For i, j € N, we can find &;;(¢) € co[a;;(y;(¢))] and Bi (D) € colb;j(yi(1))] for a.e. t > O satisfying
dyl(t) _ n _ n 5 n
T —ci(Dyi(t) + Z a;;(OF;(y;(@) + Z:Bij(t)gj(yj(t -0))+ Z Eijv;
=1 =1 =1 (16)

n
+/\
=1

j=1

Tijvj + /\Dijfj(yj(t_o-)) + \/HijTj(yj(t—O')) + \/Sijvj + 1+ I/t,'(t).

Jj=

1 j=1

The initial values of the Eqs (1) and (6) are ¢(s) € C([—0o, 0], R") and Y(s) € C([—0, 0], R"), respectively.

3. Synchronization analysis

Here, a criterion is constructed to ensure the FixTS of the discontinuous DrSy (1) and the discontinu-

ous ReSy (10).

Let e;(¢) = y;i(t) — x;(t). If x(¢) and y(¢) are two arbitrary solutions to (1) and (10), respectively, the

error dynamic can be obtained as follows:
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dzgt) = —ci(t)e;(t) + iaij(t)?:j(ej(t)) + 2ﬁij(t)g~j(ej(t -0)) + 2(@1.].(;) — a (D)F (1)
J= Jj= j=
* Zn;@f@ =BG 0,(t = o)) + Al DyFi(yi(t = ) = Al Dy Fj(x,(t = ) 17)
J= Jj= =
+ \”/1 HiiFi(y;(t — o)) — \"/1 HiF (x;(t — o)) + ui(1),
J= j=
where

File;(D) = Fi(y;(0) - FHx,(0)),

Gilej(t — ) = G;(yj(t — @) — Gi(x;(t — O)).

Design a control strategy

ui(t) = ~Siei(t) — w; - sign(ei0) = Y kijle; (t = )| - sign(ei() — T(t. ) le)|'™* - sign(e(r)),  (18)

=

where .
I(t,e) = lexp ([Z e,-(t)] J :
i=1

0;, w;, and k;; are the control parameters, and 0 < g < 1,/ > 1 are positive constants.

Remark 3.1. In the modified controller, a specially designed exponential function term is introduced,
which is noticeably different from the conventional power-function-based controllers. This optimized
controller enables FixTS more readily, and the estimation of the convergence time becomes simpler.
From the perspective of neural network circuit implementation, such an optimized controller is also
easier to realize and entails lower economic costs.

The key findings of this research can be demonstrated as follows:

Theorem 3.1. Given that (Al) and (A2) hold, if the conditions
(i) §; + ci(t) = X aiP; > 0,
(if) w; — Y1y |ty — ai| Ly = X1y |Bij = Bij| M; > 0,
(iii) kij — bPQ; — |Dij| P; — |Hyj| P; > 0,
are satisfied, then the ReSy (10) is synchronized with the DrSy (1) in a fixed time under control strategy (18).

Proof. Consider the Lyapunov function

n

V() = ) leio). (19)

i=1
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The derivative of V(¢) can be defined as

T =3 2D nten)

dt — dt

= |- aew+ Z a;i(DF (e (1)) + Z,Bu(t)gj(e](t — o)+ Z(aum @i (DF(,(1)

i=1 j=1

+ Z(ﬂ,,(t) BAOG 0t~ + N\ D0t = o) = A\ Dyt - o)

J=1 J=1

v v Hy (3t = ) - V HyT (3t = ) + (0| - sign(ei)

<- Z ci(blei(t)] + Z Z s (DIF (e ()] + Z Z BOIIG (et = o))l - Isign(ei()

i=1 j=1 i=1 j=1
+ Z Z 631() = i (DIIF (1) - Isign(es()
i=1 j=I
£ 30 B0 = Bi01G 3, — ) - sign(e(1))
i=1 j=1

. Z | AD,,T (vt = 0)) - /\D,ﬂ’(x,(t o))l - Isign(e)]

i=1 j=1

+ Z | V HijFi(y,(t = 0)) - \/ HijFj(xj(t = )| - Isign(e)]

i=1 j=1

+ Z ui(1) - Isign(ei(1)\.
j=1
(20)
It is shown from (A1, A2) that

S S asiF i< Y Y ap e 1)

i=1 j=1 i=1 j=1

where

D p—
aji = maX{lQﬁL |a]l|}

n n

Bii(DIIG (et — )| - Isign(ei(1))|
j=1

i=1

S,
=

< bl 0)le;(t — o)l - Isign(e; (1)), (22)
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where
D _ 7
bP = max{lb, | o).

n n

(1) = ai(OIF (v (D)] - |sign(e(n)]

J=
n

Il
—_
—_

i
n

|&ij - 6Vlij| L; - Isign(ei(n)].
1

IA

i=1 j

n n

Bij(t) = Bi;(OIG (v (1 — )| - [sign(e; (1))
1

—_

i=1 j=
n

n

<

l;ij - l;ij| M; - [sign(e; (D).

i=1 j=1

n

DN DT = o) =\ Dyt = )| - Isign(edn)]
j=1

i=1 | j=1

< > D IDIF it = o)) = Fitxj(e — o) - sign(ei(e)

i=1 j=1

< > D IDyIPl(e (e = o)l - Isign(ei ).

i=1 j=1

DN HiFit = 09) = \/ HyF5x,t = )| - Isign(es(0)

i=1 | j=1 Jj=1

< > D HGIF (= o) = Fitxj(e = o))l - Isign(ein)]
i=1 j=1

< )" D HPl(e (t - o))l - sign(ei(d)]
i=1 j=1

Substituting (21)—(26) into (20), we obtain

n

T <= Yl - Y aPlleo)
i=1 =1

+ 33 bP0jle; (t = ) |- Isign(ei)

i=1 j=1

(23)

(24)

(25)

(26)
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+ Z Z(Iaij - Zlij| L;+ |Bij - l;ij| M;) - |sign(e;(1))|

i=1 j=1

+ 0 > IDiIPl(e (e = o)) - Isign(ei(e)

i=1 j=1

+ D > HijIPl(e (e = o)) - Isign(e(t)
i=1 j=1

+ ) u0) - Isign(ei(n). 27
i=1

Substituting (18) into (27), we obtain

dv \ \
(t) < - Z[Ci(t) — Z aﬁPj“ei(t)l
i=1 Jj=1

dt

+ > bh0jle; (1 — o) |- Isign(ein)]

=1 j=1

+ Z Z(|&ij - aij| L;+ |Bij - Eij| M;) - [sign(e;(1))]

=1 j=1

+ 3" 3 IDiP (et — )] - Isign(es(n)

i=1 j=1
+ >0 3 HIP (et = o))l - Isign(e, (1))
i=1 j=1
= > Gileidl = > wi- Isign(ei®) = > > kijle; (t = )] - sign(ei(r)
i=1 i=1 i=1 j=1

_ Z (1, €) e (1)~ - sign(ei(1))|
i=1

n

== D G+ cit) = ) alPleis)
i=1 j=1
- Z(wi - Z |5lij - Cvlij| L;- Z |Bij - Bijl M;) - [sign(e;(1))]
i=1 j=1 Jj=1
= > > (kij = BHQ; — IDyjIP; — |HijIPI(e;(t — o) - Isign(ei(r))
=1 j=1
= > Tt o) lein]'™ - Isign(e, (1)), (28)
i=1
n q
['(¢t,e) = lexp [[Z ei(t)] )
i=1
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When conditions (i)—(iii) are met,then

d‘;it) =7 ; I(t, ) lei(t)]' ™ - sign(ei (1))

= 3 1exp(( Y e)lein)]' ™ - sign(ei(r) (29)
i=1 i=1

= > 1exp(() en)Dlenl'™,
i=1 i=1

e = leo)' = = V',
i=1 i=1

and, therefore,

dv(1) -
< -l vHyvi,
max max 1
I'(¢p, e0) < 1o + Fz ,Fz = a
Hence, ReSy (10) is synchronized with DrSy (1) in a fixed time under control strategy (18). The
proof is complete. O

Remark 3.2. FinTS and FixTS can both achieve synchronization between DRS within a finite time,
but they have fundamental differences in theory and application. The convergence time for FinTS
depends on InSts, ensuring synchronization within a finite time, but the convergence time cannot be
uniformly estimated. In contrast, FixTS completes synchronization within a uniform upper bound that is
independent of InSts. FinTS is suitable for systems with known or controllable InSts, where controller
design is relatively simple. However, it has unstable convergence times when faced with disturbances or
Jfrequent resets, making it less feasible in engineering applications. On the other hand, FixTS$ is more
suitable for high-demand scenarios like aerospace and smart grids, where time and safety are critical,
despite its more complex controller design.

Remark 3.3. In this work, a switched discontinuous StFC is designed, which facilitates the achievement
of FixTS. The inclusion of switched discontinuous terms effectively addresses the variability and
uncertainty of Filippov solutions in the DRS. Naturally, switched discontinuous controllers also have
drawbacks: they are prone to inducing oscillations, where even minor parameter perturbations may
trigger such oscillatory behavior, which is detrimental to synchronization performance. This issue
can be mitigated using optimization algorithms or by approximating the discontinuous functions with
continuous ones.

Remark 3.4. Reference [40] investigates the predetermined-time stability of memristive chaotic systems,
while our study focuses on the FixTS problem of neural networks. In the controller design presented
in [40], intermittent control is used, whereas our approach employs a switched StFC. Additionally, the
fuzzy method applied in the two studies differs: Reference [40] utilizes the T-S fuzzy method, whereas
we adopt the fuzzy ’AND’ and fuzzy "OR’ methods.
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Remark 3.5. In Reference [41], the FixTS of fuzzy complex networks incorporating reaction-diffusion
factors is studied, where intermittent control is used to achieve synchronization. The method employed
involves power functions and sign functions, whereas our approach utilizes a special exponential
function method to achieve FixTS§.

4. Numerical examples

This section presents two numerical examples to validate the viability of the FixTS strategy introduced
in the preceding section.

Example 4.1. Consider the 2-D TDFMNNs s (1) as the DrSy, and system (10) as the ReSy with parameters:
ci®)=c(t) =1, =, =s5in(8t),D11 =D =Dy =Dpn=H1=Hpo=Hy=Hp=2,0=1,L;=
1 1 1 1
E,Mj = Z,Pj = Q’Qj =2

The neuron activations are defined as

¥ i(x) = 0.5 tanh(x),

Gj(x) = 0.25 tanh(x),

0.5lx =yl = |F;(x) = F,()l,

0.25|x =yl 2 1G(x) = G,V
The InSts of the DrSy of (1) is given as

¢(S) = (_29 3)T’ S € [_1’0]
The InSts of the ReSy of (10) is given as

P(s) = (1,-0.6)7, s € [-1,0].

The memristor-based weights are given as follows:

lx1(0)] < 0.8,
|x1 (0] > 0.8,

lx1(0)] < 0.8,

-2,
an(x (1) = { |x1 () > 0.8
— 1 -0,

-1,
a(x (1) = {_1 5

1,
1.2, [x(n)] <£0.8,
.5,

o < 4™ ey < 15 @I <08,
PR 205, )] > 0.8, PEYTT05, 0 o) > 08,
(-3, m@I<08, (-2 moI<03,

b11(x (1)) = {_2’ (D] > 0.8, b1 (x1(1) = {_1, (D] > 0.8,
C[-25, 0l <08, 05, <08,
Pt = {—1, () > 08, 2 {1, ()] > 0.8,

Choosing 6y = 2,0, =2,wy = 5,wy =4, kyy = kip =kyy =k =4,1=1,q =0.5, and u;(t) gives the
following design:
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j=1
2 2
W —Z|5l1j—flu|Lj—Z|l31,-—13],-|Mj =375>0,
— -
]2 J2 A V
wy — Z @) — o[ L — Z |62 — bsj| M; = 2.65 > 0,
J=1 Jj=1

kii — b0 Q; — Dy Pj— |Hi|P; =125 >0,
kot — b5 Q; — |Day| Pj — |Hy | P; = 1.375 > 0,
kia —b?sz —|Dp| Pj—|Hip| Pj =15 >0,
kyy — b5,Q; — |Dy| Pj — |Hp| P; = 1.75 > 0.

As of right now, it is easily obtained that all circumstances (i)—(iii) in Theorem 3.1 are satisfied.

15 I I I I

Figure 1. Phase plane of x;(¢) and x,(¢) for DrSy (1) in Example 4.1.

Due to this, in a fixed time, Eqs (1) and (10) can synchronize robustly. Moreover, from Theorem 3.1,
I%* can be determined as follows:

1 1
T(t, €0) < fo + T % = — = —_ =2,
(%0, o) 0 2 2 ql 05

Electronic Research Archive Volume 33, Issue 6, 3517-3542.
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05 ]

-0.5

1 (1)1 (1)

-1.5

0 2 4 6 8 10
time ¢

Figure 2. System states x;(#), y;(#) with control protocol in Example 4.1.

Zo(t)
e y2(t) | |
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1.5

2(1),(t)

0.5

e

0 2 4 6 8 10
time ¢

Figure 3. System state x,(7), y,(¢) with control protocol in Example 4.1.

A numerical simulation is performed utilizing the MATLAB 2020B software to validate the theories.
The phase-plane behavior of the TDFMNNs without the controller is shown in Figure 1 for the system’s
StVas, x;(7) and x,(¢). Figures 2 and 3 illustrate the states of x;(¢), y;(¢) and x,(?), y»(¢), respectively,
under the controller’s action for the controlled TDFMNNSs system. Furthermore, Figure 4 illustrates
the trajectories of the synchronization errors between the DrSy and the ReSy. It is evident from Figure

Electronic Research Archive Volume 33, Issue 6, 3517-3542.
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4 that the state of the ReSy, propelled by the synchronous controller, converges to that of the DrSy,
with the convergence error remaining zero after ["¢*. This observation confirms the effectiveness of the
proposed controller in driving the system to achieve FixTS.

e1(t)
Eg(t) |

()l(t)ﬁ’l(t)

_4‘ 1 1 1 1
0 2 4 6 8 10
t

Figure 4. Synchronization error trajectories of DrSy (1) and corresponding ReSy(10) under
the control strategy(18) in Example 4.1.

Example 4.2. Consider a 3-D TDFMNNs described by system (1) as the DrSy and system (10) as the
ReSy with parameters c;(t) = cy(t) = c3(t) = 1,1} = I, = I3 = cos(12t),D;; = H;; = 11—0,0' =1,L; =
S MmM.=3p. =1 Q.:l
M= 5T 5% T 5
The neuron activations are defined as
1 2
Fi(x) = 3 tanh(x) + 3
0.2x =yl = |F;(x) = F;)l,
1 2
Qj(X) = 5 tanh(x) + g,
0.21x =yl 2 1G (%) = G,
The InSts of the DrSy of (1) is given as

¢(S) = (_g’ %3 1)T’ s € [_1’0]

The InSts of the ReSy of (10) is given as

P(s) = (2,3,-3), s e[-1,0].

The memristor-based weights are as follows:

Electronic Research Archive Volume 33, Issue 6, 3517-3542.
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-0.1,

ay(x1(r)) = { 0.3

0.4,

a3(x1(7)) = {_0 3
(x2(0) = 07,
R =00,
axp(xy (1) = 0.
23(X2(2)) = 0.3,
azi(x3(1) = 0.4,
31(x3(f)) = 0.3,
(x3(1)) = 03,
G0 8,
byt 0.3,
1n(x1(@) = 0.2,
by3(x(0) = 02
13(X1 0.8,
0.2,
br1(x2(1) = {0.6,
0.4,
by3(x2(1) = {0-2,

0.5,

b3 (x3(2)) = {—O 3

0.5,

b33(x3(1) = {_1 5

Electronic Research Archive

lx1 ()] < 0.3,
lx1 (D] > 0.3,

lx; (1) <0.3
| ()] > 0.3

lx2(0)] < 0.3,
lx2(0)] > 0.3,
lx2(0)] < 0.3,
lx2(6)] > 0.3,

lx3(n)] < 0.3,
lx3()] > 0.3,
lx3(n)] < 0.3,
lx3(n)] > 0.3,

lxi (0] < 0.3,
lx1(0)] > 0.3,
lxi (0] < 0.3,
lx1(0)] > 0.3,

lx2(0)] < 0.3,
lx2(0)] > 0.3,
lx2(0)] < 0.3,
lx2(6)] > 0.3,

lx3(0)] < 0.3,
lx3(0)] > 0.3,
lx3(0)] < 0.3,
|x3(£)] > 0.3.

-0.2,
ap(xi(1) = {—O 3
0.7,
an(x(t)) = {0 4
0.5,
axn(x3(t)) = {0 5
0.5,
bia(x1(2)) = {0 1,
0.3,
by (x:(1) = {0 5

-04
b3 (x3(2)) = {—O 5

)

b

lx1 ()] < 0.3,
lx1 ()] > 0.3,

lx2(0)] < 0.3,
lx2(6)] > 0.3,

lx3(n)] < 0.3,
lx3(n)] > 0.3,

lxi (0] < 0.3,
lx1(0)] > 0.3,

lx2(0)] < 0.3,
lx2(6)] > 0.3,

lx3(0)] < 0.3,
lx3(0)] > 0.3,

Choosing 61 = 3,0, = 3,03 =3, w; =5,w, =5,w3 = 5,k;j =4,1 =1, = 0.5, and u,(t) gives the
following design:
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wi = Y Jay =y Li= )" by = by M; = 4.1 2 0,
J;] J;l

Wy = Y oy = | L= ) |baj = boj| M; = 3.86 > 0,
j=1 j=1
3 3

wy = Y las; = | L= ) |bs; = byj| M; = 3.62 2 0,
J=1 J=l

kit —b)Q; — IDy| P — |Hy| P = 3.9 >0,

ki» —b,Q; — [Dpo| Pj — |Hpo| Py = 3.86 > 0,

ki3 — b3Q; — |Di3| Pj — |His| Pj = 3.8 > 0,

kai — b5 Q; — |Dyy| Pj — |Hy | P; = 3.84 > 0,

kay — b5,Q; — |Dys| Pj — |Hp| P; = 3.86 > 0,

ka3 — b%5Q; — D3| P; — |Has| P; = 3.88 > 0,

k31 — b5 Q; — D3| Pj — |H3 | P; = 3.86 > 0,

ks, — b55Q; — |D3| Pj — |H3p| P; = 3.88 > 0,

ky; — b35Q; — |D33| P; — |Hz3| P; = 3.66 > 0.

As of right now, it is easily obtained that Theorem 3.1’s requirements (conditions (i)—(iii)) are all met.

Consequently, DrSy (1) in a fixed time effectively accomplished robust synchronization with ReSy
(10). Additionally, Theorem 3.1 provides a means to determine I as

1 1
I'(z, <tg+ I I = — = — =2,
(to,e0) < 1o + 17 5 405

Figure 5 illustrates the 3-D phase plane characteristics of the StVas x,(7), x,(¢), and x3(¢) for the
uncontrolled TDFMNNSs. Similarly, the trajectories of the controlled TDFMNNs system states are
shown in Figures 68, respectively. The controlled system’s trajectories show that the suggested
control approach effectively achieves synchronization between DrSy and ReSy. Figure 9 illustrates the
controller’s performance, demonstrating how the system driven by the synchronous controller reaches
the state of DrSy and maintains a convergence error of zero after ["**.
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Figure 5. Phase plane of x,(#), x,(¢), and x3(¢) for DrSy (1) in Example 4.2.

ml(t)
15] E—tE

time t

Figure 6. States x(¢) and y,(#), with control protocol in Example 4.2.

Electronic Research Archive

Volume 33, Issue 6, 3517-3542.



3536

(1)
28 ==t |

26 1

time t

Figure 7. States x,(¢) and y,(¢), with control protocol in Example 4.2.

1.5

1 1 - y3(t) | A
0 WW

-0.5

X0y,

-1.5

time t

Figure 8. States x3(¢) and ys3(#), with control protocol in Example 4.2.
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er(t)
4 ea(t) | 4
L’;;(t)

e, (t).e,().e,(0)

Figure 9. Synchronization error trajectories of DrSy (1) and corresponding ReSy(10) under
the control strategy(18) in Example 4.2.

The overall results demonstrate the controller’s ability to readily achieve FixTS. Moreover, the
simplicity of requiring only three design conditions for obtaining the control rate parameters suggests
that the design and estimation of convergence time are less complex, thus affirming the practical
feasibility of this optimized controller. In terms of neural network circuit implementation, this optimized
controller is also straightforward to implement and incurs lower economic costs. As far as the authors
are aware, the neural networks in this paper are constructed considering more objective factors, including
memristors, time-variation of coefficients, time-delay, and FL. While previous studies such as [27]
investigated FinTS of delayed FNNs with discontinuous activation, and [28] explored FinTS and FixTSs,
these models do not incorporate memristors. Additionally, although [35] addresses the FixTS problem
for MNN, the system in [35] lacks time delay and FLL components. Moreover, this paper introduces
a modified controller with a special exponential function term, distinct from existing power function
form controllers. By employing specially designed exponential functions and leveraging the indefinite
derivative Lyapunov function method, a discontinuous StFC is developed to effectively achieve FixTS
control of the memristor-based FNNs. Moreover, this approach provides a diversified method for
estimating the convergence time, involving very few parameters and offering a simpler formulation for
convergence time estimation.

5. Conclusions

This research examines FixTS problems concerning TDFMNNSs. To solve these problems, a method
that makes use of a special exponential function and Lyapunov function method was adopted. Addi-
tionally, a discontinuous StFC was designed, which was able to achieve FixTS while also significantly
increasing the convergence rate. In contrast to earlier published literature, FixTS offers several ad-
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vantages. First, compared to traditional exponential and asymptotic synchronization, FixTS achieves
faster convergence. In contrast, the error states in [12, 18,42] synchronize over an infinite time horizon,
while the FixTS in this paper is achieved within a finite time. Second, the FixTS proposed here also
outperforms FinTS. In [43, 44], the convergence time of FinTS heavily affected by the InSts of the
system, whereas the convergence time of our FixTS is independent of any InSts. The third advan-
tage lies in the different methods used to achieve FixTS. In [41], fixed-time control is implemented
using power and sign functions, while our approach employs a special exponential function to achieve
fixed-time control. The control designs in these two approaches are fundamentally different, with our
controller having the advantage of fewer control parameters. Although FixTS control can shorten a
system’s convergence time, they have limitations when the control objective must be reached within
a specified, predefined-time frame, independent of the InSts or system factors [45]. For instance, in
special engineering applications such as predefined-time altitude control of spacecraft, DC microgrids,
aircraft docking, and secure communication, systems must frequently attain specified objectives within
a predetermined timeframe by actual requirements [46]. Inspired by [40,41], predefined-time pinning
control of FNNs with reaction-diffusion terms is also a highly significant research topic. We plan to
dedicate more time and effort to this area in our future studies.
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