Theory article

Stability analysis of discrete-time switched systems with bipartite PDT switching

  • Received: 14 September 2024 Revised: 30 October 2024 Accepted: 13 November 2024 Published: 22 November 2024
  • The stability and stabilization problems of discrete-time switched systems are studied under the so-called bipartite persistent dwell-time switching, which is proposed by relaxing some of the limitations in existing persistent dwell-time switching. This paper provides new stability criteria for discrete-time switched systems using a binary quasi-time-varying Lyapunov function. Next, the stabilizing controllers for discrete-time switched-controlled systems are designed. Finally, we give a practical example to show the effectiveness of the conclusions and less conservatism than those based on the persistent dwell-time switching.

    Citation: Qiang Yu, Xiujuan Jiang. Stability analysis of discrete-time switched systems with bipartite PDT switching[J]. Electronic Research Archive, 2024, 32(11): 6320-6337. doi: 10.3934/era.2024294

    Related Papers:

  • The stability and stabilization problems of discrete-time switched systems are studied under the so-called bipartite persistent dwell-time switching, which is proposed by relaxing some of the limitations in existing persistent dwell-time switching. This paper provides new stability criteria for discrete-time switched systems using a binary quasi-time-varying Lyapunov function. Next, the stabilizing controllers for discrete-time switched-controlled systems are designed. Finally, we give a practical example to show the effectiveness of the conclusions and less conservatism than those based on the persistent dwell-time switching.



    加载中


    [1] D. Liberzon, A. S. Morse, Basic problems in stability and design of switched systems, IEEE Control Syst. Mag., 19 (1999), 59–70. https://doi.org/10.1109/37.793443 doi: 10.1109/37.793443
    [2] S. Zheng, S. Wang, X. Chen, Y. Xie, P. Shi, Z. Jiang, Logic-based switching finite-time stabilization with applications in mechatronic systems, Int. J. Robust Nonlinear Control, 33 (2023), 3064–3085. https://doi.org/10.1002/rnc.6565 doi: 10.1002/rnc.6565
    [3] U. Boscain, G. Charlot, M. Sigalotti, Stability of planar nonlinear switched systems, Discrete Contin. Dyn. Syst., 15 (2006), 415–432. https://doi.org/10.3934/dcds.2006.15.415 doi: 10.3934/dcds.2006.15.415
    [4] P. Shi, X. Su, F. Li, Dissipativity-based filtering for fuzzy switched systems with stochastic perturbation, IEEE Trans. Autom. Control, 61 (2016), 1694–1699. https://doi.org/10.1109/TAC.2015.2477976 doi: 10.1109/TAC.2015.2477976
    [5] W. Xiang, J. Xiao, Stabilization of switched continuous-time systems with all modes unstable via dwell time switching, Automatica, 50 (2014), 940–945. https://doi.org/10.1016/j.automatica.2013.12.028 doi: 10.1016/j.automatica.2013.12.028
    [6] G. Zong, H. Ren, L. Hou, Finite-time stability of interconnected impulsive switched systems, IET Control Theory Appl., 10 (2015), 648–654. https://doi.org/10.1049/iet-cta.2015.0617 doi: 10.1049/iet-cta.2015.0617
    [7] D. Li, Y. Lin, Z. Pu, Non-autonomous stochastic lattice systems with Markovian switching, preprint, arXiv: 2204.00776.
    [8] X. M. Sun, J. Zhao, D. J. Hill, Stability and $L_{2}$-gain analysis for switched delay systems: A delay-dependent method, Automatica, 42 (2006), 1769–1774. https://doi.org/10.1016/j.automatica.2006.05.007 doi: 10.1016/j.automatica.2006.05.007
    [9] Y. Zhao, J. Zhao, J. Fu, Y. Shi, C. Chen, Rate bumpless transfer control for switched linear systems with stability and its application to aero-engine control design, IEEE Trans. Ind. Electron., 67 (2019), 4900–4910. https://doi.org/10.1109/TIE.2019.2931222 doi: 10.1109/TIE.2019.2931222
    [10] Y. Zhao, S. H. Yu, J. Lian, Anti-disturbance bumpless transfer control for switched systems with its application to switched circuit model, IEEE Trans. Circuits Syst. II Express Briefs, 67 (2020), 3177–3181. https://doi.org/10.1109/TCSII.2020.2970068 doi: 10.1109/TCSII.2020.2970068
    [11] Y. Zhao, J. Zhao, $H_{\infty}$ reliable bumpless transfer control for switched systems with state and rate constraints, IEEE Trans. Syst. Man Cybern.: Syst., 50 (2020), 3925–3935. https://doi.org/10.1109/TSMC.2018.2871335 doi: 10.1109/TSMC.2018.2871335
    [12] H. Shen, M. Xing, H. Yan, J. Cao, Observer-based $l_{2}-l_{\infty}$ control for singularly perturbed semi-Markov jump systems with an improved weighted TOD protocol, Sci. China Inf. Sci., 65 (2022), 199204. https://doi.org/10.1007/s11432-021-3345-1 doi: 10.1007/s11432-021-3345-1
    [13] J. Wang, D. Wang, H. Yan, H. Shen, Composite Anti-disturbance $H_{\infty}$ control for hidden Markov jump systems with multi-sensor against replay attacks, IEEE Trans. Autom. Control, 69 (2024), 1760–1766. https://doi.org/10.1109/TAC.2023.3326861 doi: 10.1109/TAC.2023.3326861
    [14] A. S. Morse, Supervisory control of families of linear set-point controllers - Part $1$: Exact matching, IEEE Trans. Autom. Control, 41 (1996), 1413–1431. https://doi.org/10.1109/9.539424 doi: 10.1109/9.539424
    [15] J. P. Hespanha, A. S. Morse, Stability of switched systems with average dwell time, in Proceedings of the 38th IEEE Conference on Decision and Control, IEEE, (1999), 2655–2660. https://doi.org/10.1109/CDC.1999.831330
    [16] J. P. Hespanha, Uniform stability of switched linear systems extensions of Lasalle's invariance principle, IEEE Trans. Autom. Control, 49 (2004), 470–482. https://doi.org/10.1109/TAC.2004.825641 doi: 10.1109/TAC.2004.825641
    [17] J. Liu, L. Kang, New results on stability and $L_{1}$-gain characterization for switched positive systems: A persistent dwell time approach, Trans. Inst. Meas. Control, 44 (2022), 1288–1296. https://doi.org/10.1177/01423312211053325 doi: 10.1177/01423312211053325
    [18] T. Yu, Y. Zhao, Q. Zeng, Stability analysis for discrete-time switched GRNs with persistent dwell-time and time delays, J. Franklin Inst., 357 (2020), 11730–11749. https://doi.org/10.1016/j.jfranklin.2019.09.039 doi: 10.1016/j.jfranklin.2019.09.039
    [19] T. Han, S, Ge, T. Lee, Persistent dwell-time switched linear systems: Variation paradigm and gauge design, IEEE Trans. Autom. Control, 55 (2010), 321–337. https://doi.org/10.1109/TAC.2009.2034927 doi: 10.1109/TAC.2009.2034927
    [20] L. I. Allerhand, U. Shaked, Robust stability and stabilization of linear switched systems with dwell time, IEEE Trans. Autom. Control, 56 (2011), 381–386. https://doi.org/10.1109/TAC.2010.2097351 doi: 10.1109/TAC.2010.2097351
    [21] S. Q. Li, F. Q. Deng, M. L. Xing, Aperiodic sampled-data robust $H_{\infty}$ control for delayed stochastic fuzzy systems with quasi-periodical multi-rate approach, J. Franklin Inst., 356 (2019), 4530–4553. https://doi.org/10.1016/j.jfranklin.2019.01.051 doi: 10.1016/j.jfranklin.2019.01.051
    [22] Y. E. Wang, H. R. Karimi, D. Wu, Conditions for the stability of switched systems containing unstable subsystems, IEEE Trans. Circuits Syst. II Express Briefs, 66 (2019), 617–621. https://doi.org/10.1109/TCSII.2018.2852766 doi: 10.1109/TCSII.2018.2852766
    [23] D. Liberzon, Switching in Systems and Control, Birkhäuser Boston, 2003. https://doi.org/10.1007/978-1-4612-0017-8
    [24] C. Xiang, S. Tang, R. A. Cheke, W. Qin, A locust phase change model with multiple switching states and random perturbation, Int. J. Bifurcation Chaos, 26 (2016), 1630037. https://doi.org/10.1142/S0218127416300378 doi: 10.1142/S0218127416300378
    [25] W. E. Ricker, Stock and recruitment, J. Fish. Res. Board Can., 11 (1954), 559–623. https://doi.org/10.1139/f54-039
    [26] P. Moran, Some remarks on animal population dynamics, Biometrics, 6 (1950), 250–258. https://doi.org/10.2307/3001822 doi: 10.2307/3001822
    [27] D. Ludwig, D. D. Jones, C. S. Holling, Qualitative analysis of insect outbreak systems: The spruce budworm and forest, J. Anim. Ecol., 47 (1978), 315–332.
    [28] C. Wei, X. Xie, J. Sun, J. H. Park, Attack-resilient dynamic-memory event-triggered control for fuzzy switched systems with persistent dwell-time, IEEE Trans. Fuzzy Syst., 32 (2024), 3154–3164. https://doi.org/10.1109/TFUZZ.2024.3364754 doi: 10.1109/TFUZZ.2024.3364754
    [29] Q. Yu, X. Yuan, Stability analysis for positive switched systems having stable and unstable subsystems based on a weighted average dwell time scheme, ISA Trans., 136 (2023), 275–283. https://doi.org/10.1016/j.isatra.2022.10.019 doi: 10.1016/j.isatra.2022.10.019
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(127) PDF downloads(15) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog