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Abstract: The stability and stabilization problems of discrete-time switched systems are studied
under the so-called bipartite persistent dwell-time switching, which is proposed by relaxing some of
the limitations in existing persistent dwell-time switching. This paper provides new stability criteria
for discrete-time switched systems using a binary quasi-time-varying Lyapunov function. Next, the
stabilizing controllers for discrete-time switched-controlled systems are designed. Finally, we give a
practical example to show the effectiveness of the conclusions and less conservatism than those based
on the persistent dwell-time switching.
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1. Introduction

As a special type of hybrid systems, a switched system is composed of a series of continuous or
discrete subsystems and rules that coordinate the switching among these subsystems [1]. Due to the
fact that many practical systems can be modeled as switched systems, such as chemical processes and
mechanical systems [2], switched systems have attracted widespread attention and research in recent
decades. The stability problem is the first concern of the research on switched systems. So far, there
has been much literature presenting excellent results on the stability of switched systems [3–5] and
the design of stabilization controllers [6–8]. Rate, anti-disturbance, and H∞ reliable bumpless transfer
control for switched systems were investigated in the literature [9–11], respectively. The designs of l2−

l∞ and H∞ control for semi-/hidden Markov switching systems were presented in the literature [12,13],
respectively. The concept of dwell time (DT) was proposed in the literature [14]. DT refers to the
running time of each subsystem being no less than a fixed constant. The concept of average dwell time
(ADT) was proposed in the literature [15] by relaxing the requirement of DT, which allows subsystems
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to have some appropriate fast switching and compensate for it later by switching slowly enough. The
persistent dwell-time (PDT) switching was first proposed in [16] and has less conservatism than DT
and ADT. In the PDT switching, each stage is divided into two parts: τ-portion and T -portion. The
operating time of the subsystem activated in τ-portion is not less than a fixed constant τ to compensate
for system instability caused by arbitrary switching in T -portion. Thus, PDT allows for the existence
of fast switching in its T -portion, which makes it more general than DT and ADT. When there is no
T -portion in the PDT switching, it degenerates into DT. In addition, both ADT and DT switchings
are mainly applicable to switched systems with all subsystems stable, while the PDT switching can be
directly used to switched systems with some unstable subsystems. When there are unstable subsystems,
the whole system can be stable by designing a suitable switching signal to make the unstable subsystem
run in the T -portion. Up to now, there have been some conclusions about the asymptotic stability of
linear and nonlinear switched systems under the PDT switching strategy [16, 17]. Only when the
activation time of the subsystem is no less than τ, it can be considered as τ-portion [18, 19]. This
restriction is relatively strict. Therefore, the work considers relaxing the corresponding limitations by
proposing a new bipartite persistent dwell-time (BPDT) switching strategy. Different from PDT, the
BPDT switching defines the sum of the running times of two continuously activated subsystems is not
less than τ as the τ-portion. This improvement makes it easier to design switching signals and has less
conservatism than PDT switching.

As is well known, the Lyapunov function method plays an important role in the stability analysis
of switched systems. In recent years, the so-called the quadratic form of quasi-time-varying Lyapunov
function (QLF) was proposed in [20], which is more refined and effective than the traditional multiple
Lyapunov function method in studying the stability of switched systems. During the dwell time of a
certain subsystem, this function changes linearly in time, after which it is some fixed constant. It is
also used to study the robust H∞ problem of time-delay stochastic T-S fuzzy systems with sampled
data [21]. In order to correspond with the BPDT switching, this article extends the corresponding QLF
to the binary quasi-time-varying Lyapunov function (BQLF).

The three main contributions of this paper are as follows: First, a new switching scheme BPDT is
proposed, which appropriately relaxes the τ-portion condition of the PDT switching. Second, a new
BQLF method is constructed that is compatible with the PDT switching. Third, some less
conservative stability and stabilization conditions have been obtained based on the BPDT switching
and BQLF method.

The structure of the remainder of the paper is organized as follows: Section 2 provides some
necessary preliminary knowledge. Section 3 analyzes the stability of the switched system based
on the BQLF and BPDT switching, and the stabilization controller design of the system is given.
Section 4 provides a practical example to demonstrate the results of this paper. Section 5
provides conclusions.

The notations used in this paper are listed in Table 1.
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Table 1. The notations used in this paper.

Notation The denotation of the notation

R the set of real numbers
Rn the set of n-dimensional real vectors
Rn×n the space of n × n real matrices
N (N+) the set of nonnegative (positive) integers
GT the transpose of a matrix G
Z≥a {z ∈ N+ | z ≥ a}, a ∈ N+
Z[a,b] {z ∈ N+ | a ≤ z ≤ b}, a, b ∈ N+
∥ · ∥ Euclidean norm of vectors
κ ∈ K∞ κ : [0,∞)→ [0,∞) is unbounded, continuous, strictly increasing and κ(0) = 0
S n
>0 the set of n × n positive definite symmetric matrices
⋆ the transpose of diagonal elements of symmetric matrices
P > 0 (≥ 0) the matrix P is positive definite (semi-definite) and symmetric
P < 0 (≤ 0) the matrix −P > 0 (≥ 0)

2. Problem statements and preliminaries

Consider the discrete-time switched system as follows:

x(z + 1) = fρ(z)x(z), z ∈ N, (2.1)

where x(z) ∈ Rn is the state of the system, the switching signal ρ(z) is a piecewise constant right
continuous function with respect to z, taking values onM = {1, 2, · · · ,m}, where m ∈ N+ is the number
of subsystems.

The switching sequence is as follows: 0 ≤ z0 < z1 < · · · < zr < zr+1 < · · · , where z0 represents
the initial time of system operation and zr represents the rth switching instant. When z ∈ [zr, zr+1), the
ρ(zr)th subsystem is activated. The time interval between two adjacent switches is called dwell time:
τr = zr+1 − zr, r = 0, 1, 2, · · · .

This paper mainly focuses on the stability of discrete-time switched systems under BPDT switching
signals. Now we will first recall several necessary definitions.
Definition 1 ( [11]) For a switching signal ρ(z) and two positive constants τ and T , if there exists an
infinite number of non-adjacent switching intervals with their length not smaller than τ, and the length
of all other intervals shall not exceed T . Then τ and T are called persistent dwell-time and period of
persistence of ρ(z), respectively.
Remark 1 From the above definition, it can be seen that each stage of PDT switching includes two
parts: τ-portion and T -portion (Figure 1). For the convenience of expression, we will denote the
actual running time of the T -portion of the pth stage as T (p), and the relationship between T and T (p)

is as follows:

T (p) =

Q(zr(p)+1,zr(p+1))∑
c=1

Tzr(p)+c ≤ T , (2.2)
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where zr(p)+c and Tzr(p)+c represent the switching instant of T -portion and the running time of the
ρ(zr(p)+c)th subsystem, respectively. Q(zr(p)+1, zr(p+1)) represents the number of switching times of the
system within the interval [zr(p)+1, zr(p+1)), and zr(p)+1 and zr(p+1) represent the beginning and ending
switching times of the T -portion in the pth stage, respectively.

Figure 1. PDT switching.

Remark 2 Compared with the familiar DT and ADT switching, PDT switching is easier to design
and less conservative because it can be switched arbitrarily in the T -portion. The system instability
caused by arbitrary switching of T -portion can be compensated by running a stable subsystem for a
certain period in τ-portion.
Definition 2 ( [22]) The function g : [0,∞) → [0,∞) is called a class K function if it is continuous,
satisfies g(0) = 0 and strictly increases. If g is also radially unbounded, it is called a classK∞ function.
Definition 3 ( [23]) System (2.1) is globally uniformly asymptotically stable (GUAS) under the
switching signals ρ(z) , if for any x(z0) ∈ Rn, there exists κ ∈ K∞ such that ∥x(z)∥ ≤ κ(∥x(z0)∥),
∀z ∈ Z≥z0 and ∥x(z)∥ → 0 as z→ ∞.

3. Main results

This section discusses the stability and stabilization of the switched system (2.1) under the
BPDT switching.

Because the PDT switching requires that the running time of the subsystem in τ-portion is not less
than τ, it is relatively demanding, which leads to some difficulty in designing appropriate switching
signals. By relaxing the restriction of τ-portion, this paper makes it easier to design switching signals
and obtain less conservative results.
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Definition 4 A switching signal is called the bipartite persistent dwell-time (BPDT) switching, if it
satisfies the following conditions:

(i): The sum of the lengths of two adjacent switching intervals is no less than a constant τ (called
τ-portion), and there are an infinite number of such τ-portion.

(ii): All switching intervals between two adjacent τ-portions are less than τ, and the sum of them is
not more than T , which is called T -portion.
Remark 3 Under the BPDT switching (Figure 2), the definition of T (p) correspondingly changes to

T (p) =

Q(zr(p)+2,zr(p+1))∑
c=2

Tzr(p)+c ≤ T , (3.1)

where zr(p)+c and Tzr(p)+c represent the switching instant of T -portion of the pth stage and the running
time of the subsystem activated at switching instant zr(p)+c, respectively. zr(p)+2 and zr(p+1) represent the
beginning and ending switching times of the T -portion in the pth stage, respectively.

Figure 2. Improved PDT switching.

The τ-portion of the BPDT switching satisfies τ1
p + τ

2
p ≥ τ, where τ1

p and τ2
p respectively represent

the running time of two subsystems in the τ-portion of the pth stage (as shown in Figure 2). Therefore,
the BPDT switching compensates for the instability caused by the rapid switching of the T -portion
by τ-portion. This includes a wider signal range than PDT switching, thus having superiority and
less conservatism. In fact, different from PDT’s τ-portion only having one switching interval, every
BPDT’s τ-portion contains two switching intervals, which gives BPDT greater design freedom.

For the convenience of later description, some symbols are given as follows:
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(i): in the τ-portion,

ς(z) =



z − zr(p), z ∈ [zr(p), zr(p) +
τ1p

τ1p+τ
2
p
τ)

τ1p

τ1p+τ
2
p
τ, z ∈ [zr(p) +

τ1p

τ1p+τ
2
p
τ, zr(p)+1)

z − zr(p)+1, z ∈ [zr(p)+1, zr(p)+1 +
τ2p

τ1p+τ
2
p
τ)

τ2p

τ1p+τ
2
p
τ, z ∈ [zr(p)+1 +

τ2p

τ1p+τ
2
p
τ, zr(p)+2)

, (3.2)

(ii): in the T -portion,

ς(z) = z − Hc(z), z ∈ [zr(p)+2, zr(p+1)), (3.3)

where Hc(z) = arg{max(zr(p)+c|z ≥ zr(p)+c, zr(p)+c ∈ [zr(p)+2, zr(p+1)), c ∈ Z[2,Q(zr(p)+2,zr(p+1))])}.
Now the following lemma is given for the nonlinear system (2.1).

Lemma 1 Consider the discrete-time switched system (2.1). Given scalars 0 < λ < 1, µ > 0, if there
exist functions Fρ(z)(x(z), ς(z)) and κ1, κ2 ∈ K∞, such that

∀ς(z), κ1(∥x(z)∥) ≤ Fρ(z)(x(z), ς(z)) ≤ κ2(∥x(z)∥), (3.4)

∀z ∈ [zr(p), zr(p) +
τ1

p

τ1
p + τ

2
p
τ), Fρ(z)(x(z + 1), ς(z) + 1) ≤ λFρ(z)(x(z), ς(z)), (3.5)

∀z ∈ [zr(p) +
τ1

p

τ1
p + τ

2
p
τ, zr(p)+1), Fρ(z)(x(z + 1), ς(z)) ≤ λFρ(z)(x(z), ς(z)), (3.6)

∀z ∈ [zr(p)+1, zr(p)+1 +
τ2

p

τ1
p + τ

2
p
τ), Fρ(z)(x(z + 1), ς(z) + 1) ≤ λFρ(z)(x(z), ς(z)), (3.7)

∀z ∈ [zr(p)+1 +
τ2

p

τ1
p + τ

2
p
τ, zr(p)+2), Fρ(z)(x(z + 1), ς(z)) ≤ λFρ(z)(x(z), ς(z)), (3.8)

∀z ∈ [zr(p)+2, zr(p+1)), Fρ(z)(x(z + 1), ς(z) + 1) ≤ λFρ(z)(x(z), ς(z)), (3.9)

∀ρ(zr(p)+ j) , ρ(zr(p)+ j − 1), j = 1, 2, Fρ(zr(p)+ j)(x(zr(p)+ j), 0) ≤ µFρ(zr(p)+ j−1)(x(zr(p)+ j), τ j
p), (3.10)

∀ρ(zr(p)+c) , ρ(zr(p)+c − 1), Fρ(zr(p)+c)(x(zr(p)+c), 0) ≤ µFρ(zr(p)+c−1)(x(zr(p)+c),Tzr(p)+c−1), (3.11)

where Tzr(p)+c−1 ∈ [1,min(τ − 1,T (p))], c ∈ Z[3,Q(zr(p)+2zr(p+1))+2] and T (p) ∈ Z[1,T ]. Then the system (2.1) is
GUAS under the BPDT switching
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(T + 2) ln µ + T ln λ + τ ln λ ≤ 0. (3.12)

Proof. When λµ < 1, it can be directly concluded that the switching system is GUAS under any
switching signal. The case of λµ > 1 is discussed below. For the convenience of narration, let
Q(zr(p)+2, zr(p+1)) = q, it follows from (3.5)–(3.11) that

Fρ(zr(p+1))(x(zr(p+1)), 0)
≤µFρ(zr(p)+q)(x(zr(p+1)),Tzr(p)+q)

≤µλTzr(p)+qFρ(zr(p)+q)(x(zr(p+1) − Tzr(p)+q), 0)

≤µ2λTzr(p)+qFρ(zr(p)+q−1)(x(zr(p+1) − Tzr(p)+q),Tρ(zr(p)+q−1))

≤µ2λTzr(p)+qλTzr(p)+q−1Fρ(zr(p)+q−1)(x(zr(p+1) − Tzr(p)+q − Tzr(p)+q−1), 0)
· · ·

≤µq+1λT
(p)
λτ

1
p+τ

2
pFρ(zr(p))(x(zr(p)), 0)

≤µT
(p)+2λT

(p)
λτFρ(zr(p))(x(zr(p)), 0). (3.13)

From λµ > 1, it can be concluded that µT
(p)+2λT

(p)
= (λµ)T

(p)
µ2 ≤ (λµ)Tµ2 = µT+2λT .

Combining (3.13), it can be seen that

Fρ(zr(p+1))(x(zr(p+1)), 0) ≤ µT+2λTλτFρ(zr(p))(x(zr(p)), 0). (3.14)

Let µT+2λTλτ = ϖ. Iterating the above process yields

Fρ(zr(p+1))(x(zr(p+1)), 0)
≤ϖFρ(zr(p))(x(zr(p)), 0)
· · ·

≤ϖpFρ(zr(1))(x(zr(1)), 0)
≤ϖpµTλTFρ(z0)(x(z0), 0). (3.15)

According to the inequality (3.12), one has ϖ ≤ 1. It can be obtained from (3.4) that
∥x(zr(p+1))∥ ≤ a1(∥x(z0)∥), where a1(·) = κ−1

1 (ϖpµTλT κ2(·)). Furthermore, from (3.4)–(3.11), we can
deduce that ∥x(z)∥ ≤ a2(∥x(z0)∥), where a2(·) = κ−1

1 (ϖpµTλT κ2(a1(·)). By Definition 4, the GUAS of
the system (2.1) can be obtained.
Remark 4 The difference between the QLF and BQLF. The ς(z) in the QLF is divided into two
segments in the τ-portion, where ς(z) varies linearly with respect to z before the dwell time and remains
a fixed constant after the dwell time. Unlike this, ς(z) in the BQLF is divided into four segments in
the τ-portion, according to the proportion of the running time of the two subsystems activated in the τ-
portion. ς(z) changes linearly with respect to z before the

τ1p

τ1p+τ
2
p
τ period of the first subsystem activated

in the τ-portion, after which it is a fixed constant
τ1p

τ1p+τ
2
p
τ. ς(z) changes linearly with respect to z before

the
τ2p

τ1p+τ
2
p
τ period of the second subsystem activated in the τ-portion, after which it is a fixed constant

τ2p

τ1p+τ
2
p
τ. Therefore, the BQLF is more flexible than the QLF.
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Generally, one can take the BQLF as follows:

Fρ(z)(x(z), ς(z)) = xT (z)Pρ(z)(ς(z))x(z), (3.16)

where ς(z) is represented by Eqs (3.2) and (3.3), and Pρ(z)(ς(z)) ∈ S n
>0.

Consider the discrete-time switched linear system

x(z + 1) = Gρ(z)x(z), (3.17)

where Gρ(z) ∈ R
n×n are known constant matrices with appropriate dimensions.

Next, let’s provide the stability criterion of the system (3.17) using the BQLF (3.16).

Theorem 1 Consider the system (3.17). Given scalars 0 < λ < 1, µ > 0, if there exist matrices
Pu(ς(z)) ∈ S n

>0, u ∈ M, such that ∀ u, v ∈ M, u , v, ∀ ς = 0, 1, · · · , τ,

G
T
u Pu(ς + 1)Gu − λPu(ς) ≤ 0, (3.18)

G
T
u Pu

 τ1
p

τ1
p + τ

2
p
τ

Gu − λPu

 τ1
p

τ1
p + τ

2
p
τ

 ≤ 0, (3.19)

G
T
u Pu

 τ2
p

τ1
p + τ

2
p
τ

Gu − λPu

 τ2
p

τ1
p + τ

2
p
τ

 ≤ 0, (3.20)

Pu(0) − µPv(τ j
p) ≤ 0, j = 1, 2, (3.21)

Pu(0) − µPv(Tv) ≤ 0 (3.22)

hold, then the discrete-time switched linear system (3.17) is GUAS under the BPDT switching (3.12).
Proof. The BQLF is selected as the formula (3.16), so (3.4) naturally holds.

From (3.18), it follows that

Fu(x(z + 1), z + 1 − zr(p)) − λFu(x(z), z − zr(p))
=xT (z + 1)Pu(ς + 1)x(z + 1) − λxT (z)Pu(ς)x(z)
=xT (z)GT

u Pu(ς + 1)Gux(z) − λxT (z)Pu(ς)x(z)
=xT (z)[GT

u Pu(ς + 1)Gu − λPu(ς)]x(z) ≤ 0. (3.23)

Then it can be concluded that (3.5) and (3.7) in Lemma 1 hold.
From (3.19), it follows that
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Fu

x(z + 1),
τ1

p

τ1
p + τ

2
p
τ

 − λFu

x(z),
τ1

p

τ1
p + τ

2
p
τ


=xT (z + 1)Pu

 τ1
p

τ1
p + τ

2
p
τ

 x(z + 1) − λxT (z)Pu

 τ1
p

τ1
p + τ

2
p
τ

 x(z)

=xT (z)
GT

u Pu

 τ1
p

τ1
p + τ

2
p
τ

Gu − λPu

 τ1
p

τ1
p + τ

2
p
τ

 x(z) ≤ 0. (3.24)

Then one can obtain (3.6). Similarly, (3.8) follows from (3.20).
By combining (3.18)–(3.20) and (3.2), we can obtain (3.9).
It follows from (3.21) that

Fu(x(z), 0) − µFv(x(z), τ j
p)

=xT (z)Pu(0)x(z) − µxT (z)Pv(τ j
p)x(z)

=xT [Pu(0) − µPv(τ j
p)]x(z) ≤ 0. (3.25)

Thus (3.10) holds, where j = 1, 2.
It follows from (3.22) that

Fu(x(z), 0) − µFv(x(z),Tv)
=xT (z)Pu(0)x(z) − µxT (z)Pv(Tv)x(z)
=xT [Pu(0) − µPv(Tv)]x(z) ≤ 0. (3.26)

One can obtain (3.11).
From the above analysis, it can be seen that all the conditions in Lemma 1 are valid. Thus, it can be

concluded that the system (3.17) is GUAS under the BPDT switching (3.12).
There are two main difficulties in designing the BPDT switching to the system studied in Theorem 1.

First, it is unreasonable to require the value of τ1
p, τ2

p and Tv in advance. This issue can be resolved by
the following Remarks 5 and 6. Second, parameters λ, µ, and T in conditions need to be determined.
It is solved in the following Remark 8.
Remark 5 According to the above theorem, the conditions (3.19) and (3.20) that make the system
stable are relatively strict. We need to know the values of τ1

p and τ2
p in advance in order to calculate the

corresponding values of
τ1p

τ1p+τ
2
p
τ and

τ2p

τ1p+τ
2
p
τ. It is difficult to achieve in practical applications. In order to

make the conclusion of Theorem 1 easier to implement, we have made some appropriate simplifications
to the conditions (3.19) and (3.20). Given appropriate values for λ, µ and T , one can easily calculate
the range of values for τ based on (3.12). For example, τ ≥ 4.2, the following situations can be taken:

(i):
τ1p

τ1p+τ
2
p
τ = 1,

τ2p

τ1p+τ
2
p
τ = 4;

(ii):
τ1p

τ1p+τ
2
p
τ = 2,

τ2p

τ1p+τ
2
p
τ = 3;

(iii):
τ1p

τ1p+τ
2
p
τ = 3,

τ2p

τ1p+τ
2
p
τ = 2;

(iv):
τ1p

τ1p+τ
2
p
τ = 4,

τ2p

τ1p+τ
2
p
τ = 1.
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Remark 6 The inequalities (3.21) and (3.22) in Theorem 1 require prior knowledge of the values of
τ

j
p and Tv, which is not easy to implement in practical applications. We can simplify it as follows:

Pu(0) − µPv(τ) ≤ 0,

Pu(0) − µPv(T ) ≤ 0.

This can further simplify the calculation of Theorem 1.
Remark 7 The relationship between PDT and BPDT. PDT can be seen as a special case of BPDT.
When the limitation of the τ-portion of BPDT degenerates to a part where the running time of a
subsystem is not less than τ, it can be considered as the τ-portion, and BPDT degenerates into PDT.
At this point, inequalities (3.19) and (3.27) in Theorem 1 degenerate into

G
T
u Pu(τ)Gu − λPu(τ) ≤ 0.

Inequality (3.21) degenerates into

Pu(0) − µPv(τ) ≤ 0.

BPDT (3.12) degenerates into PDT

τ ≥ −((T + 1) ln µ + T ln λ)/(ln λ). (3.27)

Remark 8 In Theorem 1, there are some parameters that need to be determined, for example, λ, µ, and
T . In fact, one can take a larger λ ∈ (0, 1) (to ensure a larger feasible range for conditions (3.18)–(3.20)
and a larger µ (to obtain a larger feasible range for conditions (3.21) and (3.22) and a smaller T (to
make (3.12) feasible). If conditions (3.18)–(3.22) are feasible for some λ, µ but (3.12) infeasible, one
can reduce λ, µ appropriately to increase (3.12) feasibility.
Remark 9 Here we present the effect of T on the conclusion. It follows from (3.12) that

T + 2
T + τ

≤ −
ln λ
ln µ
.

If τ > 2 and − ln λ
ln µ > 1, then the inequality (3.12) is always feasible for any T .

If τ ≤ 2 and − ln λ
ln µ < 1, then the inequality (3.12) is infeasible for any T .

In practical applications, the value of T is often less than or similar to τ.
Now we will consider the following system:

x(z + 1) = Gρ(z)x(z) +Bρ(z)w(z), (3.28)

where w(z) represents controlled input. The following theorem provides the design of the stabilization
controller w(z) = Kρ(z)(ς)x(z) for the system.

Theorem 2 Consider the system (3.28). Given scalars 0 < λ < 1, µ > 0, if there exist matrices
Cu(ς) ∈ S n

>0 and Du(ς), u ∈ M, such that ∀ u, v ∈ M, u , v, ∀ ς = 0, 1, · · · , τ,[
−Cu(ς + 1) GuCu(ς) +BuDu(ς)
⋆ −λCu(ς)

]
≤ 0, (3.29)
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 −Cu(
τ1p

τ1p+τ
2
p
τ) GuCu(

τ1p

τ1p+τ
2
p
τ) +BuDu(

τ1p

τ1p+τ
2
p
τ)

⋆ −λCu(
τ1p

τ1p+τ
2
p
τ)

 ≤ 0, (3.30)

 −Cu(
τ2p

τ1p+τ
2
p
τ) GuCu(

τ2p

τ1p+τ
2
p
τ) +BuDu(

τ2p

τ1p+τ
2
p
τ)

⋆ −λCu(
τ2p

τ1p+τ
2
p
τ)

 ≤ 0, (3.31)

Cv(τ j
p) − µCu(0) ≤ 0, j = 1, 2, (3.32)

Cv(Tv) − µCu(0) ≤ 0 (3.33)

hold, then the system (3.28) is GUAS under the BPDT switching (3.12) and the controller gain Ku(ς) =
Du(ς)C−1

u (ς), where T (p) ∈ Z[1,T ], Tv ∈ Z[1,min(τ−1,T (p))].

Proof. Let Cu(ς) = P−1
u (ς), Du(ς) = Ku(ς)P−1

u (ς). According to Schur complement, the
inequality (3.29) is equivalent to

P−1
u (ς)[Gu +BuKu(ς)]T Pu(ς + 1)[Gu +BuKu(ς)]P−1

u (ς) − λP−1
u (ς) ≤ 0. (3.34)

The inequality (3.34) is multiplied by left and right Pu(ς) respectively, to obtain

[Gu +BuKu(ς)]T Pu(ς + 1)[Gu +BuKu(ς)] − λPu(ς) ≤ 0. (3.35)

The inequality (3.30) is equivalent to

P−1
u (

τ1
p

τ1
p + τ

2
p
τ)[Gu +BuKu(

τ1
p

τ1
p + τ

2
p
τ)]T Pu(

τ1
p

τ1
p + τ

2
p
τ)[Gu +BuKu(

τ1
p

τ1
p + τ

2
p
τ)]P−1

u (
τ1

p

τ1
p + τ

2
p
τ) − λP−1

u (
τ1

p

τ1
p + τ

2
p
τ) ≤ 0. (3.36)

The inequality (3.36) is multiplied by left and right Pu(
τ1p

τ1p+τ
2
p
τ) respectively, to obtain

[Gu +BuKu(
τ1

p

τ1
p + τ

2
p
τ)]T Pu(

τ1
p

τ1
p + τ

2
p
τ)[Gu +BuKu(

τ1
p

τ1
p + τ

2
p
τ)] − λPu(

τ1
p

τ1
p + τ

2
p
τ) ≤ 0. (3.37)

Similarly, it can be concluded from (3.31) that

[Gu +BuKu(
τ2

p

τ1
p + τ

2
p
τ)]T Pu(

τ2
p

τ1
p + τ

2
p
τ)[Gu +BuKu(

τ2
p

τ1
p + τ

2
p
τ)] − λPu(

τ2
p

τ1
p + τ

2
p
τ) ≤ 0. (3.38)

Multiplying the inequality (3.32) left and right by Pv(τ
j
p) and Pu(0), respectively, yields

Pu(0) − µPv(τ j
p) ≤ 0, j = 1, 2. (3.39)

Multiplying the inequality (3.33) left and right by Pv(Tv) and Pu(0), respectively, yields

Pu(0) − µPv(Tv) ≤ 0. (3.40)
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Letting Gu = Gu +BuKu(ς), the inequalities (3.35), (3.37)–(3.40) imply (3.18)–(3.22), respectively.
According to Theorem 1, the system (3.28) is GUAS under the BPDT switching (3.12) with designed
controller gain Ku(ς) = Du(ς)C−1

u (ς).
Remark 10 Compared to the traditional multiple Lyapunov function for switched systems, the BQLF
here allows for greater freedom in selecting the parameter matrices, thereby reducing the conservatism
of the stability and controller design of the system studied. The fact can be seen from the Lyapunov
function (3.16) that both the parameter matrices Pρ(z)(ς(z)) and the controller gain Ku(ς) = Du(ς)C−1

u (ς)
are binary quasi-time-varying.

4. A practical example

This section demonstrates the practicality and effectiveness of the proposed method through a
practical example of controlling the growth of harmful flying insects.

Spodoptera frugiperda is an invasive alien species that causes serious harm to various crops, such
as corn and sorghum, due to its strong reproductive ability and great destructive effects on crops.
In studying the explosive growth pattern of harmful species populations and their impact on crops
and ecosystems, the transition period of flying insects from a loose solitary stage to a group living
stage is a crucial period for controlling their population size [24]. In order to control the number
of insects in a timely manner before their eclosion, using a discrete single population model [25, 26]
and considering the impact of insect predation on their species outbreak [27], the following model
is proposed:

x(z + 1) = e
[
c(1− x(z)

L )− bx(z)
a2+x(z)2

]
x(z), (4.1)

where x(z) represents the density of the zth generation insect population, c represents the intrinsic
growth rate, L represents the environmental carrying capacity, and parameters a and b are constants.
After linearizing the above model, it can be simplified as:

x(z + 1) = Gρ(z)x(z), (4.2)

where the system’s matrices with a certain constructiveness are selected as follows:

G1 =

[
−0.5 0.2
0.1 −0.4

]
,G2 =

[
−0.1 0.3
0.4 −0.2

]
.

The eigenvalues of G1 are a1 = −0.4732 and a2 = 0.1268; the eigenvalues of G2 are a1 = 0.2 and
a2 = −0.5. As we know, the stability of a discrete-time linear system (4.2) is equivalent to the Schur
stability of the system matrix Gρ(z), that is, whether all eigenvalues of matrix Gρ(z) are located within
the unit circle of the complex plane. Obviously, both subsystems are stable.

For the convenience of calculation, we select some appropriate parameters under the constraint of
Theorem 1: λ = 0.6, µ = 2.1, T = 3. By substituting the above parameters into inequalities (3.12)
and (3.27), it can be calculated that: BPDT is τ ≥ 4.2621; we take τ = 5; PDT not less than 2.8098;
select 3. Suppose the initial state of the system is x(0) = [3, 1]T .

Select the appropriate switching instants: 0, 2, 5, 6, 7, 9, 12, 13, 14, 16 · · · . Under the BPDT
switching strategy, 0, 2, 5,︸           ︷︷           ︸

τ−portion

6, 7,︸          ︷︷          ︸
T−portion

9, 12,︸           ︷︷           ︸
τ−portion

13, 14,︸             ︷︷             ︸
T−portion

· · · , that is, within each
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complete stage, the running time of τ-portion and T -portion is 5 and 2, respectively. Under the PDT
switching strategy, 0, 2,︸  ︷︷  ︸

T−portion

5,︸      ︷︷      ︸
τ−portion

6, 7, 9,︸                   ︷︷                   ︸
T−portion

12,︸       ︷︷       ︸
τ−portion

13, 14, 16,︸                        ︷︷                        ︸
T−portion

· · · , that

is, within each complete stage, the running time of τ-portion and T -portion is 3 and 4, respectively.
From the above analysis, it can be seen that the τ-portion of the BPDT switching strategy has a

longer running time than the T -portion, while the PDT switching strategy has the opposite situation.
This indicates that it is easier to compensate for system instability caused by arbitrary switching in the
T -portion. This also proves the superiority of the BPDT switching strategy proposed in this paper.

Under the switching sequence given above, in order to simplify the calculation, take the special
case (i) in Remark 5, and the conditions of Theorem 1 become:

G
T
u Pu(1)Gu − λPu(0) ≤ 0, (4.3)

G
T
u Pu(1)Gu − λPu(1) ≤ 0, (4.4)

G
T
u Pu(3)Gu − λPu(2) ≤ 0, (4.5)

G
T
u Pu(4)Gu − λPu(3) ≤ 0, (4.6)

G
T
u Pu(5)Gu − λPu(4) ≤ 0, (4.7)

Pu(0) − µPv(5) ≤ 0, (4.8)

Pu(0) − µPv(3) ≤ 0, (4.9)

where u, v ∈ M = {1, 2}. Substitute the values of λ and µ into inequalities (4.3)–(4.9). By using
MATLAB to solve the above inequalities, it can be obtained that Pu(1)–Pu(5), their values are given in
the second column of Table 2. For ease of expression, denote Pu(i) as Pu,i, where u ∈ M,
i ∈ {1, 2, 3, 4, 5}.

Under the PDT switching strategy, inequality (4.4) becomes

G
T
u Pu(2)Gu − λPu(1) ≤ 0, (4.10)

inequality (4.8) becomes (4.9). The values of Pu(1)–Pu(5) can be calculated using MATLAB, and their
values are given in the third column of Table 2.

Select λ = 0.6, µ = 2.1, T = 3. It can be concluded from inequalities (3.12) and (3.27) that
BPDT τ ≥ 4.2621 and PDT τ ≥ 2.9098. We can take BPDT switching τ = 5 > 4.2621 and PDT
switching τ = 3 > 2.9098. The state responses under the PDT switching in [18] and the designed
BPDT switching in the paper are shown in Figures 3 and 4, respectively. Here, the running times of
the τ-portion and T -portion under the two switching strategies are equal, respectively. It can be clearly
observed from Figures 3 and 4 that the BPDT switching strategy can stabilize the system faster.
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When the selected parameters are λ = 0.6, µ = 2.3, T = 3, it follows from inequalities (3.12)
and (3.27) that BPDT τ ≥ 5.1610 and PDT τ ≥ 3.5279. If we take τ1

p = τ
2
p = 3, then τ = τ1

p + τ
2
p =

3 + 3 = 6 > 5.1610, which implies the system is stable under such BPDT switching. However,
τ1

p = τ
2
p = 3 < 3.5279, thus we can not obtain the stability of the system under the same signal by the

PDT switching. Therefore, the BPDT switching is more general than the PDT [18].

Table 2. Comparison of BPDT and PDT switching strategies.

Switching strategy BPDT in Theorem 1 PDT in [18]
λ 0.6 0.6
µ 2.1 2.1
T 3 3

P1,0

[
212.4547 −43.3794
−43.3794 178.1463

] [
8.4689 −2.6514
−2.6514 7.7258

]
∗

P1,1

[
206.4627 265.3486
−354.0830 165.7543

] [
8.0089 −2.2567
−2.2567 7.3375

]
∗

P1,2

[
175.9481 −26.7140
−26.7140 153.7497

] [
7.1591 −1.6892
−1.6892 6.6613

]
∗

P1,3

[
142.3370 −91.5902
48.9129 125.3799

] [
5.3566 −1.2626
−1.2626 5.0028

]
∗

P1,4

[
160.2338 −33.5240
−6.4107 149.9520

] [
0.3408 −3.7304
−3.7304 −2.4305

]
∗

P1,5

[
138.7184 −3.7261
−37.2291 122.7773

] [
−19.5540 −28.0980
−28.0980 −49.6990

]
∗

P2,0

[
212.4547 −299.9207
213.1619 178.1463

] [
8.4689 −2.6514
−2.6514 7.7258

]
∗

P2,1

[
206.4627 −86.0807
−2.6537 165.7543

] [
8.0089 −2.2567
−2.2567 7.3375

]
∗

P2,2

[
175.9481 −26.7140
−26.7140 153.7497

] [
7.1591 −1.6892
−1.6892 6.6613

]
∗

P2,3

[
142.3370 −17.4150
−25.2623 125.3799

] [
5.3566 −1.2626
−1.2626 5.0028

]
∗

P2,4

[
160.2338 −297.6663
257.7316 149.9520

] [
0.3408 −3.7304
−3.7304 −2.4305

]
∗

P2,5

[
138.7184 −60.8570
19.9019 122.7773

] [
−19.5540 −28.0980
−28.0980 −49.6990

]
∗

τ 4.2621 2.9098
State response Figure 3 Figure 4

Note: ∗ represents 107.
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Figure 3. State response of the system under PDT switching signal.
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Figure 4. State response of the system under BPDT switching signals.
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5. Conclusions

This paper investigates the stability and stabilization controller design of the discrete-time switched
systems under BPDT switching. By relaxing the constraints in PDT switching, this article proposes
the concept of BPDT switching. It has a wider switching signal range than traditional PDT switching.
In addition, we analyze the stability of switched systems by extending the QLF to the BQLF. The
stability criterion for the discrete-time switched system is given in the form of linear matrix inequalities.
Subsequently, a stabilizing controller is designed to stabilize the system. Finally, a practical example
is used to illustrate the validity of the conclusions given in this paper.

Since BPDT can give greater design freedom than PDT, it and its adapted BQLF are expected
to be extended to those systems that are suitable for PDT switching, such as discrete-time switched
GRNs with time delays [18], fuzzy switched systems [28], and positive switched systems [29]. It is
worth noting that the BPDT strategy proposed in this article for discrete-time switched systems may
be extended to the continuous case. The difficulty of this extension lies in how to partition τ1

p and τ2
p in

the construction for ς(z) in (3.2).
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