Research article

Elliptic equations in $ \mathbb{R}^2 $ involving supercritical exponential growth

  • Received: 16 July 2024 Revised: 09 September 2024 Accepted: 10 September 2024 Published: 18 September 2024
  • In this work, we investigated the existence of nontrivial weak solutions for the equation

    $ -{\rm div}(w(x)\nabla u) \ = \ f(x,u),\qquad x \in \mathbb{R}^2, $

    where $ w(x) $ is a positive radial weight, the nonlinearity $ f(x, s) $ possesses growth at infinity of the type $ {\rm \exp}\big((\alpha_0+h(|x|)\big)|s|^{2/(1-\beta)}) $, with $ \alpha_0 > 0 $, $ 0 < \beta < 1 $ and $ h $ is a continuous radial function that may be unbounded at infinity. To show the existence of weak solutions, we used variational methods and a new type of the Trudinger-Moser inequality defined on the whole two-dimensional space.

    Citation: Yony Raúl Santaria Leuyacc. Elliptic equations in $ \mathbb{R}^2 $ involving supercritical exponential growth[J]. Electronic Research Archive, 2024, 32(9): 5341-5356. doi: 10.3934/era.2024247

    Related Papers:

  • In this work, we investigated the existence of nontrivial weak solutions for the equation

    $ -{\rm div}(w(x)\nabla u) \ = \ f(x,u),\qquad x \in \mathbb{R}^2, $

    where $ w(x) $ is a positive radial weight, the nonlinearity $ f(x, s) $ possesses growth at infinity of the type $ {\rm \exp}\big((\alpha_0+h(|x|)\big)|s|^{2/(1-\beta)}) $, with $ \alpha_0 > 0 $, $ 0 < \beta < 1 $ and $ h $ is a continuous radial function that may be unbounded at infinity. To show the existence of weak solutions, we used variational methods and a new type of the Trudinger-Moser inequality defined on the whole two-dimensional space.



    加载中


    [1] H. Brézis, Elliptic equations with limiting Sobolev exponents, Comm. Pure Appl. Math., 39 (1986), 517–539.
    [2] H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437–477. https://doi.org/10.1002/cpa.3160360405 doi: 10.1002/cpa.3160360405
    [3] T. Bartsh, M. Willem, On an elliptic equation with concave and convex nonlinearities, Proc. Amer. Math. Soc., 123 (1995), 3555–3561.
    [4] A. Capozzi, D. Fortunato, G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Henri Poincaré, 2 (1985), 463–470.
    [5] W. Kryszewski, A. Szulkin, Generalized linking theorem with an application to a semilinear Schrödinger equation, Adv. Differ. Equations, 3 (1998), 441–472. https://doi.org/10.57262/ade/1366399849 doi: 10.57262/ade/1366399849
    [6] W. Y. Ding, W. M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal., 91 (1986), 283–308. https://doi.org/10.1007/BF00282336. doi: 10.1007/BF00282336
    [7] J. P. G. Azorero, I. P. Alonso, Existence and non-uniqueness for the p-Laplacian, Comm. Partial Differ. Equations, 12 (1987), 1389–1430. https://doi.org/10.1080/03605308708820534 doi: 10.1080/03605308708820534
    [8] J. V. Gonçalves, C. O. Alves, Existence of positive solutions for m-Laplacian equations in $ \mathbb{R}^N$ involving critical Sobolev exponents, Nonlinear Anal., 32 (1998), 53–70. https://doi.org/10.1016/S0362-546X(97)00452-5 doi: 10.1016/S0362-546X(97)00452-5
    [9] E. A. B de Silva, S. H. M. Soares, Quasilinear Dirichlet problems in $ \mathbb{R}^N$ with critical growth, Nonlinear Anal., 43 (2001), 1–20. https://doi.org/10.1016/S0362-546X(99)00128-5 doi: 10.1016/S0362-546X(99)00128-5
    [10] A. Adimurthi, Existence of positive solutions of the semilinear Dirichlet Problem with critical growth for the N-Laplacian, Ann. Sc. Norm. Sup. Pisa, 17 (1990), 393–413.
    [11] J. M. do Ó, N-Laplacian equations in $ \mathbb{R}^N$ with critical growth, Abstr. Appl. Anal., 2 (1997), 301–315. https://doi.org/10.1155/S1085337597000419 doi: 10.1155/S1085337597000419
    [12] L. Baldelli, R. Filippucci, Existence of solutions for critical $(p, q)$-Laplacian equations in $ \mathbb{R}^N$, Commun. Contemp. Math., 9 (2022), 2150109. https://doi.org/10.1142/S0219199721501091 doi: 10.1142/S0219199721501091
    [13] L. Gongbao, Z. Guo, Multiple solutions for the p & q-Laplacian problem with critical exponent, Acta Math. Sci. Ser. B Engl. Ed., 29 (2009), 903–918. https://doi.org/10.1016/S0252-9602(09)60077-1 doi: 10.1016/S0252-9602(09)60077-1
    [14] M. Calanchi, B. Ruf, On a Trudinger-Moser type inequality with logarithmic weights, J. Differ. Equations, 258 (2015), 1967–1989. https://doi.org/10.1016/j.jde.2014.11.019 doi: 10.1016/j.jde.2014.11.019
    [15] Y. R. S. Leuyacc, Standing waves for quasilinear Schrodinger equations involving double exponential growth, AIMS Math., 8 (2023), 1682?1695. https://doi.org/10.3934/math.2023086 doi: 10.3934/math.2023086
    [16] Y. R. S. Leuyacc, Hamiltonian elliptic system involving nonlinearities with supercritical exponential growth, AIMS Math., 8 (2023), 19121–19141. https://doi.org/10.3934/math.2023976 doi: 10.3934/math.2023976
    [17] Y. R. S. Leuyacc, Singular Hamiltonian elliptic systems involving double exponential growth in dimension two, Partial Differ. Equations Appl. Math., 10 (2024), 100681. https://doi.org/10.1016/j.padiff.2024.100681 doi: 10.1016/j.padiff.2024.100681
    [18] S. Pohožaev, The Sobolev embedding in the special case $pl = n$, in Proceedings of the Technical Science Conference on Advance Science Research Mathematics Sections, (1965), 158–170.
    [19] N. Trudinger, On embedding into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473–483.
    [20] V. Yudovich, Some estimates connected with integral operators and with solutions of elliptic equations, Dokl. Akad. Nauk SSSR, 138 (1961), 805–808.
    [21] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1970), 1077–1092.
    [22] S. L. Yadava, Multiplicity results for semilinear elliptic equations in a bounded domain of $\mathbb{R}^2$ involving critical exponent, Ann. Sc. Norm. Super. Pisa-Cl. Sci., 27 (1990), 481–504.
    [23] D. G. de Figueiredo, O. H. Miyagaki, B. Ruf, Elliptic equations in $\mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial Differ. Equations, 3 (1995), 139–153. https://doi.org/10.1007/BF01205003 doi: 10.1007/BF01205003
    [24] D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $\mathbb{R}^2$, Comm. Partial Differ. Equations, 17 (1992), 407–435. https://doi.org/10.1080/03605309208820848 doi: 10.1080/03605309208820848
    [25] M. de Souza, J. M. do Ó, On a class of singular Trudinger-Moser type inequalities and its applications, Math. Nachr., 284 (2011), 1754–1776. https://doi.org/10.1016/j.aml.2012.05.007 doi: 10.1016/j.aml.2012.05.007
    [26] A. Alvino, V. Ferone, G. Trombetti, Moser-Type Inequalities in Lorentz Spaces, Potential Anal., 5 (1996), 273–299. https://doi.org/10.1007/BF00282364 doi: 10.1007/BF00282364
    [27] H. Brézis, S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differ. Equations, 5 (1980), 773–789. https://doi.org/10.1080/03605308008820154 doi: 10.1080/03605308008820154
    [28] D. Cassani, C. Tarsi, A Moser-type inequalities in Lorentz-Sobolev spaces for unbounded domains in $\mathbb{R}^N$, Asymptotic Anal., 64 (2009), 29–51. https://doi.org/10.3233/ASY-2009-0934 doi: 10.3233/ASY-2009-0934
    [29] G. Lu, H. Tang, Sharp singular Trudinger-Moser inequalities in Lorentz-Sobolev spaces, Adv. Nonlinear Stud., 16 (2016), 581–601. https://doi.org/10.1515/ans-2015-5046 doi: 10.1515/ans-2015-5046
    [30] Y. R. S. Leuyacc, Supercritical Trudinger-Moser inequalities with logarithmic weights in dimension two, AIMS Math., 8 (2023), 18354–18372. https://doi.org/10.3934/math.2023933 doi: 10.3934/math.2023933
    [31] Q. A. Ngô, V. H. Nguyen, Supercritical Moser-Trudinger inequalities and related elliptic problems, Calc. Var. Partial Differ. Equations, 59 (2020), 69. https://doi.org/10.1007/s00526-020-1705-y doi: 10.1007/s00526-020-1705-y
    [32] S. Aouaoui, A new Trudinger-Moser type inequality and an application to some elliptic equation with doubly exponential nonlinearity in the whole space $\mathbb{R}^2$, Arch. Math., 114 (2020), 199–214. https://doi.org/10.1007/s00013-019-01386-7 doi: 10.1007/s00013-019-01386-7
    [33] O. Kavian, Introduction à la théorie des Points Critiques et Applications aux Problèmes Elliptiques, Springer-Verlag, Paris, 1993.
    [34] F. S. B. Albuquerque, C. O. Alves, E. S. Medeiros, Nonlinear Schrödinger equation with unbounded or decaying radial potentials involving exponential critical growth in $\mathbb{R}^2$, J. Math. Anal. Appl., 409 (2014), 1021–1031. https://doi.org/10.1016/j.jmaa.2013.07.005. doi: 10.1016/j.jmaa.2013.07.005
    [35] B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $\mathbb{R}^2$, J. Funct. Anal., 219 (2005), 340–367. https://doi.org/10.1016/j.jfa.2004.06.013 doi: 10.1016/j.jfa.2004.06.013
    [36] B. Ruf, F. Sani, Ground states for elliptic equations with exponential critical growth, in Geometric Properties for Parabolic and Elliptic PDE's (eds. R. Magnanini, S. Sakaguchi, A. Alvino), Springer INdAM Series, Springer, Milano, (2013), 321–349.
    [37] D. Cassani, C. Tarsi, Existence of solitary waves for supercritical Schrödinger systems in dimension two, Calc. Var. Partial Differ. Equations, 54 (2015), 1673–1704. https://doi.org/10.1007/s00526-015-0840-3 doi: 10.1007/s00526-015-0840-3
    [38] Y. R. S. Leuyacc, S. H. M. Soares, On a Hamiltonian system with critical exponential growth, Milan J. Math., 87 (2019), 105–140. https://doi.org/10.1007/s00032-019-00294-3 doi: 10.1007/s00032-019-00294-3
    [39] S. H. M. Soares, Y. R. S. Leuyacc, Singular Hamiltonian elliptic systems with critical exponential growth in dimension two, Math. Nachr., 292 (2019), 137–158. https://doi.org/10.1007/s00032-019-00294-3 doi: 10.1007/s00032-019-00294-3
    [40] H. Zhao, Y. Guo, Y. Shen, Singular type trudinger-moser inequalities with logarithmic weights and the existence of extremals, Mediterr. J. Math., 21 (2024), 50. https://doi.org/0.1007/s00009-023-02582-0
    [41] Y. R. S. Leuyacc, A class of Schrödinger elliptic equations involving supercritical exponential growth, Boundary Value Probl., 39 (2023), 17. https://doi.org/10.1186/s13661-023-01725-2. doi: 10.1186/s13661-023-01725-2
    [42] W. A. Strauss, Existence of solitary waves in higher dimension, Commun. Math. Phys., 55 (1977), 149–162. https://doi.org/10.1007/BF01626517 doi: 10.1007/BF01626517
    [43] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, American Mathematical Society, Providence, RI, 1986.
    [44] M. Willem, Minimax Theorems, Boston: Birkhäuser, 1996.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(121) PDF downloads(25) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog