

ERA, 32(9): 5341–5356. DOI: 10.3934/era.2024247 Received: 16 July 2024 Revised: 09 September 2024 Accepted: 10 September 2024 Published: 18 September 2024

https://www.aimspress.com/journal/era

Research article

Elliptic equations in \mathbb{R}^2 involving supercritical exponential growth

Yony Raúl Santaria Leuyacc*

Universidad Nacional Mayor de San Marcos, Lima, Perú

* Correspondence: Email: ysantarial@unmsm.edu.pe.

Abstract: In this work, we investigated the existence of nontrivial weak solutions for the equation

$$-\operatorname{div}(w(x)\nabla u) = f(x, u), \qquad x \in \mathbb{R}^2,$$

where w(x) is a positive radial weight, the nonlinearity f(x, s) possesses growth at infinity of the type $\exp((\alpha_0 + h(|x|))|s|^{2/(1-\beta)})$, with $\alpha_0 > 0$, $0 < \beta < 1$ and *h* is a continuous radial function that may be unbounded at infinity. To show the existence of weak solutions, we used variational methods and a new type of the Trudinger-Moser inequality defined on the whole two-dimensional space.

Keywords: Trudinger-Moser inequality; supercritical exponential growth; mountain pass theorem; elliptic equation; variational method

1. Introduction

We begin recalling the following stationary Schrödinger equation:

$$\begin{cases} -\Delta u = f(x, u), & \text{in } \Omega \subset \mathbb{R}^N \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$
(1.1)

To treat the Eq (1.1) variationally, the Sobolev embedding theorems restrict the nonlinearity f to be of the type $|f(x, u)| \le c(1 + |u|^{q-1})$, with $1 < q \le 2^* = \frac{2N}{N-2}$ and $N \ge 3$. Some pioneering results considering the above nonlinearity in a bounded domain $\Omega \subset \mathbb{R}^N$ were treated by Brézis [1], Brézis-Nirenberg [2], Bartsch-Willem [3], and Capozzi-Fortunato-Palmieri [4]. A natural extension of the equation defined on the whole space \mathbb{R}^N , considering the nonlinearity $|f(x, u)| \le c(|u| + |u|^{q-1})$, with $1 < q \le 2^* = \frac{2N}{N-2}$ in $N \ge 3$, was studied by Kryszewski and Szulkin [5], and Ding and Ni [6], among others. For this case, the Eq (1.1) needs to be rewritten as $-\Delta u + V(x)u = f(x, u)$ for $x \in \mathbb{R}^N$, where V(x) is used to address the compactness properties. Extensions of Eq (1.1) include the *p*-Laplacian operator, where Δu is replaced by $\Delta_p u := \operatorname{div}(|\nabla u|^{p-2}\nabla u)$. For instance, equations with nonlinearities exhibiting critical Sobolev exponent growth are addressed in [7] for bounded domains in \mathbb{R}^N , with similar considerations in the whole space discussed in [8, 9]. Critical exponential growth is considered in [10] for bounded domains and in [11] for the whole space. Additionally, equations involving the (p, q)-Laplacian operator, which address critical Sobolev exponents and related nonlinear growth, can be found in [12, 13]. Another type of equation involves a weight operator div $(w(x)\nabla u)$, as seen in [14, 15], with Hamiltonian systems using this operator discussed in [16, 17].

In dimension N = 2, Sobolev embedding asserts that $H_0^1(\Omega) \subset L^q(\Omega)$ for $q \ge 1$. Therefore, there is no restriction on (1.1) for the values q > 1 in $|f(x, u)| \le c(1+|u|^{q-1})$. Additionally, some examples show that $H_0^1(\Omega) \not\subset L^{\infty}(\Omega)$. For this case, the maximal growth of the nonlinearity f is of the exponential type (see Pohozaev [18], Trudinger [19], and Yudovich [20]). More precisely, it has been proven that

$$e^{\alpha|u|^2} \in L^1(\Omega), \quad \text{for all} \quad u \in H^1_0(\Omega) \text{ and } \alpha > 0.$$
 (1.2)

Furthermore, Moser [21] showed that there exists a positive constant $C = C(\alpha, \Omega)$ such that

$$\sup_{\substack{u \in H_0^1(\Omega) \\ \|\nabla u\|_{2} \le 1}} \int_{\Omega} e^{\alpha |u|^2} dx \begin{cases} \le C, & \alpha \le 4\pi, \\ +\infty, & \alpha > 4\pi. \end{cases}$$
(1.3)

Equation (1.1) with nonlinearities involving exponential growth have been studied by Adimurthi [10], Adimurthi-Yadava [22], and de Figueiredo, Miyagaki, and Ruf [23], among others. Inequality (1.3) is called the Trudinger-Moser inequality. These types of results have been extensively investigated by various authors: in Sobolev spaces over the whole space \mathbb{R}^2 [24] and in Sobolev spaces for singular versions [25]; in Lorentz-Sobolev spaces within bounded domains [26,27], in Lorentz-Sobolev spaces over the whole spaces [29]; and in weighted Sobolev spaces [14, 30]. Additionally, supercritical versions are discussed in [31].

Now, we introduce a supercritical version of the Trudinger-Moser inequality. Let Ω be a smooth domain in \mathbb{R}^2 and *w* be a weight defined on Ω . We shall denote by $H^1_{0,rad}(\Omega, w)$ the radial Sobolev weighted space obtained as the closure of all the radially symmetric functions in $C_0^{\infty}(\Omega)$ with respect to the norm

$$||u||_{\Omega,w} := ||u||_{H^1_{0,\mathrm{rad}}(\Omega,w)} = \left(\int_{\Omega} w(x)|\nabla u|^2 dx\right)^{\frac{1}{2}}.$$

In particular, if Ω is the whole space \mathbb{R}^2 , we denote the above Sobolev space as $H^1_{rad}(\mathbb{R}^2, w)$. Trudinger-Moser inequalities for radial Sobolev spaces with logarithmic weights defined on the unit ball B_1 in \mathbb{R}^2 were treated by Calanchi and Ruf [14]. Considering $w(x) = (\log 1/|x|)^{\beta}$ and $0 \le \beta < 1$, the mentioned authors proved that

$$\int_{B_1} e^{\alpha |u|^{\frac{2}{1-\beta}}} dx < +\infty, \text{ for all } u \in H^1_{0, \text{rad}}(B_1, w) \text{ and for all } \alpha > 0.$$
(1.4)

Furthermore, setting $\alpha_{\beta}^* = 2[2\pi(1-\beta)]^{\frac{1}{1-\beta}}$, there exists $C = C(\alpha,\beta) > 0$ such that

$$\sup_{\substack{u \in H_{0,\mathrm{rad}}^{1}(B_{1},w) \\ \|u\|_{B_{1},w} \leq 1}} \int_{B_{1}} e^{\alpha |u|^{\frac{2}{1-\beta}}} dx \begin{cases} \leq C, & \alpha \leq \alpha_{\beta}^{*}, \\ +\infty, & \alpha > \alpha_{\beta}^{*}. \end{cases}$$
(1.5)

Electronic Research Archive

A supercritical version of the Trudinger-Moser inequality defined on $H_{0,rad}^1(B_1) := H_{0,rad}^1(B_1, I)$, where the weight is the identity function on B_1 , was proved by Ngô and Nguyen [31]. The mentioned authors considered the following assumptions:

 (h_1) $h: [0,1) \rightarrow \mathbb{R}$ is a radial function, h(0) = 0 and h(r) > 0 for $r \in (0,1)$.

 (h_2) There exists some c > 0 such that

$$h(r) \le \frac{c}{-\ln r}$$
, near to 0.

 (h'_3) There exists $\gamma \in (0, 1)$ such that

$$h(r) \le \frac{2\gamma\pi\ln(1-r)}{\ln r}$$
, near to 1.

In [31], it was shown that

$$\int_{B_1} \exp\left((\alpha + h(|x|))|u|^2\right) dx < +\infty, \quad \text{for all } u \in H^1_{0,\text{rad}}(B_1) \text{ and for all } \alpha > 0.$$
(1.6)

Furthermore, there exists $C = C(\alpha, h) > 0$ such that

$$\sup_{\substack{u \in H_{0, \text{rad}}^{1}(B_{1}) \\ \|u\|_{B_{1}, l} \le 1}} \int_{B_{1}} \exp((\alpha + h(|x|))|u|^{2}) dx \begin{cases} \le C, & \alpha \le 4\pi, \\ = +\infty, & \alpha > 4\pi. \end{cases}$$
(1.7)

Let us consider

 (h_3'') There exist $\gamma \in (0, 1)$ such that

$$h(r) \le \frac{\gamma \alpha_{\beta}^* \ln(1-r)}{\ln r}$$
, near to 1.

The next proposition combines the above results.

Proposition 1.1 (See [30]). Assume that h satisfies (h_1) , (h_2) , and (h''_3) , and that w is the weight defined by $w(x) = (\log 1/|x|)^{\beta}$ for 0 < |x| < 1, where $\beta \in [0, 1)$. Then,

$$\int_{B_1} \exp\left(\left(\alpha + h(|x|)\right)|u|^{2/(1-\beta)}\right) dx < +\infty, \quad for \ all \ u \in H^1_{0,\mathrm{rad}}(B_1,w) \ and \ for \ all \ \alpha > 0.$$

Furthermore, there exists $C = C(\alpha, h) > 0$ *such that*

$$\sup_{\substack{u\in H_{0,\mathrm{rad}}^{1}(B_{1},w)\\ \|u\|_{B_{1},w}\leq 1}} \int_{B_{1}} \exp((\alpha+h(|x|))|u|^{2/(1-\beta)}) dx \begin{cases} \leq C, & \alpha < \alpha_{\beta}^{*}, \\ +\infty, & \alpha > \alpha_{\beta}^{*}. \end{cases}$$

We point out that conditions (h'_3) or (h''_3) allow the function $h(r) \to +\infty$ as $r \to 1^-$, and this motivates us to say that a function f possesses supercritical exponential growth if there exists $\alpha_0 > 0$ such that

$$\lim_{s \to +\infty} \frac{f(x,s)}{\exp((\alpha + h(|x|))|s|^{2/(1-\beta)})} = \begin{cases} +\infty, & \alpha < \alpha_0, \\ 0, & \alpha > \alpha_0, \end{cases}$$

Electronic Research Archive

uniformly on $x \in \mathbb{R}^2$. The above limit implies that $f(x, s) = g(x, s) \exp((\alpha_0 + h(|x|))|s|^{2/(1-\beta)})$, where

$$\lim_{s \to +\infty} \frac{g(x, s)}{\exp((\alpha + h(|x|))|s|^{2/(1-\beta)})} = 0, \quad \text{uniformly on } x \in \mathbb{R}^2, \text{ for all } \alpha > 0.$$

Our first objective in this work is to extend Proposition 1.1, in the sense of obtaining a Trudinger-Moser inequality on the whole space \mathbb{R}^2 . Following [32], we consider the weight

$$w(x) = \begin{cases} \left[\ln\left(\frac{1}{|x|}\right) \right]^{\beta}, & 0 < |x| < 1\\ |x|^{a}, & |x| \ge 1, \end{cases}$$
(1.8)

where $0 \le \beta < 1$ and a > 2. On *h*, we assume that

 (h_3) h(r) > 0 for $r \in [1, +\infty)$. Moreover, there exist c > 0 and $\xi < a/(1 - \beta) - 2$ such that

 $h(r) \le cr^{\xi}$, for *r* sufficiently large,

where the constants *a* and β are given by (1.8).

In particular, (h_3) allows us to consider the case where $h(r) \to +\infty$ as $r \to +\infty$. Next, we present our adaptation of the Trudinger-Moser inequality which will be utilized in our proof of the existence result.

Theorem 1.2. Suppose that h satisfies $(h_1) - (h_3)$ and that w is the weight defined by (1.8). Then,

$$\int_{\mathbb{R}^2} \exp\left[\left((\alpha + h(|x|))|u|^{2/(1-\beta)}\right) - 1\right] dx < +\infty, \quad for \ all \ u \in H^1_{rad}(\mathbb{R}^2, w) \ and \ \alpha > 0.$$
(1.9)

Moreover, if $\alpha < \alpha_{\beta}^*$, there exists C > 0 satisfying

$$\sup_{\|u\|_{\mathbb{R}^2,w} \le 1} \int_{\mathbb{R}^2} \exp\left[\left((\alpha + h(|x|))|u|^{2/(1-\beta)}\right) - 1\right] dx \le C.$$
(1.10)

If $\alpha > \alpha_{\beta}^*$, it holds that

$$\sup_{\||u\|_{\mathbb{R}^2,w} \le 1} \int_{\mathbb{R}^2} \exp\left[\left((\alpha + h(|x|))|u|^{2/(1-\beta)}\right) - 1\right] dx = +\infty.$$
(1.11)

In the subsequent section, we will outline the proof of Theorem 1.2. The aim of this study is to find a nontrivial weak solution to the following stationary Schrödinger equation:

$$-\operatorname{div}(w(x)\nabla u) = f(x, u), \qquad x \in \mathbb{R}^2.$$
(1.12)

Here, w represents the weight defined on (1.8) which allows that f possesses the maximal growth established in Theorem 1.2. More precisely, we assume the following hypotheses:

(*H*₁) $f : \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}$ is continuous and possesses radial symmetry in its first variable, namely f(x, s) = f(y, s) whenever |x| = |y|. Additionally, f(x, s) = 0 for all $x \in \mathbb{R}^2$ and $s \le 0$.

Electronic Research Archive

 (H_2) The following limit holds:

$$\lim_{s \to 0} \frac{f(x,s)}{s} = 0, \quad \text{uniformly on } x \in \mathbb{R}^2.$$

(*H*₃) There exists a constant $\mu > 2$ such that

$$0 < \mu F(x, s) := \mu \int_0^s f(x, t) \le s f(x, s), \quad \text{for all} \quad x \in \mathbb{R}^2 \text{ and for all } s > 0.$$

(*H*₄) There exists a constant $\alpha_0 > 0$ such that

$$\lim_{s \to +\infty} \frac{f(x,s)}{\exp((\alpha + h(|x|))|s|^{2/(1-\beta)})} = \begin{cases} +\infty, & \alpha < \alpha_0, \\ 0, & \alpha > \alpha_0, \end{cases}$$

uniformly on $x \in \mathbb{R}^2$, where *h* satisfies $(h_1) - (h_3)$.

(*H*₅) There exist constants p > 2 and $C_p > 0$ such that

$$f(x, s) \ge C_p s^{p-1}$$
, for all $s \ge 0$ and for all $x \in \mathbb{R}^2$,

where

$$C_p > \frac{S_p^p \left(\frac{\alpha_0}{\alpha_\beta^*}\right)^{(1-\beta)(p-2)/2} \left(\frac{1}{2} - \frac{1}{p}\right)^{(p-2)/2}}{\left(\frac{1}{2} - \frac{1}{\mu}\right)^{(p-2)/2}}$$

and

$$S_{p} := \inf_{0 \neq u \in H^{1}_{rad}(\mathbb{R}^{2}, w)} \frac{\left(\int_{\mathbb{R}^{2}} w(x) |\nabla u|^{2} dx\right)^{1/2}}{\left(\int_{\mathbb{R}^{2}} |u|^{p} dx\right)^{1/p}}.$$

In the forthcoming text, we shall denote the Hilbert space $E := H^1_{rad}(\mathbb{R}^2, w)$ equipped with the inner product defined as

$$\langle u, v \rangle_E = \int_{\mathbb{R}^2} w(x) \nabla u \nabla v \, dx, \quad \text{for all } u, v \in E,$$

which induces the norm

$$||u|| := ||u||_E = \left(\int_{\mathbb{R}^2} w(x) |\nabla u|^2 dx\right)^{1/2}.$$

Additionally, E^* denotes the dual space of *E* equipped with its standard norm. We define $u \in E$ to be a weak solution of (1.12) if

$$\int_{\mathbb{R}^2} w(x) \nabla u \nabla \phi \, dx = \int_{\mathbb{R}^2} f(x, u) \phi \, dx, \quad \text{for all } \phi \in E.$$
(1.13)

To find weak solutions of our problem (1.12), we will employ variational methods. For this purpose, let us consider the functional $J : E \to \mathbb{R}$ defined as:

$$J(u) = \frac{1}{2} \int_{\mathbb{R}^2} w(x) |\nabla u|^2 \, dx - \int_{\mathbb{R}^2} F(x, u) \, dx.$$

Electronic Research Archive

Moreover, based on established arguments (see [33]), it follows that J belongs to $C^1(E, \mathbb{R})$ and

$$J'(u)\phi = \int_{\mathbb{R}^2} w(x)\nabla u\nabla\phi \, dx - \int_{\mathbb{R}^2} f(x,u)\phi \, dx, \quad \text{for all } u, \ \phi \in E.$$

The main result of this article is presented as follows:

Theorem 1.3. Suppose that f satisfies $(H_1) - (H_5)$ and h satisfies $(h_1) - (h_3)$. Then, problem (1.12) possesses a nontrivial weak solution.

We point out that equations or systems with nonlinearities involving the classical Trudinger-Moser inequalities imply that the growth of f is of type $\exp(|s|^2)$ as s tends to infinity (see [23–25, 34–36], among others). Equations considering Trudinger-Moser inequalities on Lorentz-Sobolev spaces allow us to consider f of the type $\exp(|s|^p)$ with p > 1 as s tends to infinity (see [1, 37–39]). Equations with logarithmic weight defined on the unit ball in \mathbb{R}^2 may have nonlinearities of the form $\exp(|s|^{2/(1-\beta)})$ for $0 \le \beta < 1$ (see [14, 16]), $\exp((\alpha + h(|x|))|s|^2)$ (see [31, 40]), or $\exp(\alpha + h(|x|)|s|^{2/(1-\beta)})$ (see [16, 30, 41]). Furthermore, our existence theorem complements the work in [30] since we consider the whole space \mathbb{R}^2 . Our main contribution is given by the assumption (H_4), which allows us to consider the behavior of f(x, s) as $\exp(\alpha + h(|x|)|s|^{2/(1-\beta)})$ for some $\alpha > 0$, as s tends to infinity, where the radial function h may be unbounded at infinity. Finally, note that the class of functions which satisfy conditions (H_1) – (H_5) is not empty, for instance, consider the following function $f : \mathbb{R}^2 \times \mathbb{R} \to \mathbb{R}$ defined by

$$f(x,s) = \begin{cases} As^{p-1} + p(1+|x|^{\xi})s^{p-1}\exp\left((1+|x|^{\xi})s^{p}\right), & s \ge 0\\ 0, & s < 0, \end{cases}$$

for some positive constants a > 2, $0 < \beta < 1$, $0 < \xi < a/(1 - \beta) - 2$, $p = 2/(1 - \beta)$, and A sufficiently large.

2. Preliminaries

We begin this section by presenting a version of the Strauss result [42], which follows from [14, 32] and plays an important role to prove our version of the supercritical Trudinger-Moser inequality.

Lemma 2.1 (See [14, 32]). Let u be a function in E. Then,

$$|u(x)| \le \begin{cases} \frac{(-\ln|x|)^{\frac{1-\beta}{2}}}{\sqrt{2\pi(1-\beta)}} ||u||, & \text{if } 0 < |x| < 1, \\ \frac{1}{\sqrt{2\pi a}|x|^{a/2}} ||u||, & \text{if } |x| \ge 1. \end{cases}$$

The next lemma is related to the embeddings of the space *E* into Lebesgue spaces.

Lemma 2.2 (See [32]). The space *E* is continuously and compactly embedded in $L^p(\mathbb{R}^2)$ for p > 4/a.

Electronic Research Archive

2.1. Proof of Theorem 1.2

Proof. Let us consider $u \in E$ with $||u|| \le 1$ and $\alpha < \alpha_{\beta}^*$. By Lemma 2.1, we have

$$\int_{\mathbb{R}^{2}\setminus B_{1}} \left[\exp\left((\alpha + h(|x|)) |u|^{2/(1-\beta)} \right) - 1 \right] dx = \sum_{k=1}^{+\infty} \frac{1}{k!} \int_{\mathbb{R}^{2}\setminus B_{1}} [\alpha + h(|x|)]^{k} |u|^{2k/(1-\beta)} dx$$

$$\leq \sum_{k=1}^{+\infty} \frac{1}{k!} \int_{\mathbb{R}^{2}\setminus B_{1}} \frac{\left[\alpha + h(|x|) \right]^{k}}{|x|^{\frac{ak}{1-\beta}}} dx$$

$$\leq \sum_{k=1}^{+\infty} \frac{2^{k} \alpha^{k}}{k!} \int_{\mathbb{R}^{2}\setminus B_{1}} \frac{1}{|x|^{\frac{ak}{1-\beta}}} dx + \sum_{k=1}^{+\infty} \frac{2^{k}}{k!} \int_{\mathbb{R}^{2}\setminus B_{1}} \frac{h^{k}(|x|)}{|x|^{\frac{ak}{1-\beta}}} dx.$$
(2.1)

Since $a > 2(1 - \beta)$, there exists $C_1 > 0$ such that

$$\int_{\mathbb{R}^2 \setminus B_1} \frac{1}{|x|^{\frac{ak}{1-\beta}}} \, dx \le \int_{\mathbb{R}^2 \setminus B_1} \frac{1}{|x|^{\frac{a}{1-\beta}}} \, dx = C_1, \quad \text{for all} \quad k \ge 1.$$

$$(2.2)$$

From (h_3) , there exist $c_1 > 0$ and $R_0 > 1$ such that

$$h(|x|) \le c_1 |x|^{\xi}$$
, for all $|x| \ge R_0$.

Since $a > (2 + \xi)(1 - \beta)$, we can get $C_2 > 0$ such that

$$\int_{\mathbb{R}^{2} \setminus B_{R_{0}}} \frac{h^{k}(|x|)}{|x|^{\frac{ak}{1-\beta}}} \, dx \leq \int_{\mathbb{R}^{2} \setminus B_{R_{0}}} \frac{c_{1}^{k}}{|x|^{(\frac{a}{1-\beta}-\xi)k}} \, dx \leq c_{1}^{k} \int_{\mathbb{R}^{2} \setminus B_{R_{0}}} \frac{1}{|x|^{\frac{a}{1-\beta}-\xi}} \, dx = C_{2}, \quad \text{for all } k \geq 1.$$
(2.3)

Using the continuity of *h*, we can find $c_2 > 0$ such that $h(|x|) \le c_2$ for $1 \le |x| \le R_0$. Then, we can get $C_3 > 0$ such that

$$\int_{B_{R_0} \setminus B_1} \frac{h^k(|x|)}{|x|^{\frac{\alpha k}{1-\beta}}} \, dx \le \int_{B_{R_0} \setminus B_1} \frac{c_2^k}{|x|^{\frac{\alpha k}{1-\beta}}} \, dx \le c_2^k \int_{B_{R_0} \setminus B_1} \frac{1}{|x|^{\frac{\alpha}{1-\beta}}} \, dx = C_3, \quad \text{for all } k \ge 1.$$
(2.4)

Replacing (2.2)–(2.4) in (2.1), one has

$$\int_{\mathbb{R}^2 \setminus B_1} \left[\exp\left((\alpha + h(|x|)) |u|^{2/(1-\beta)} \right) - 1 \right] dx \le C_1 e^{2\alpha} + (C_2 + C_3) e^2.$$
(2.5)

On the other hand, consider v(x) = u(x) - u(e) for |x| < 1 and v(x) = 0 for $|x| \ge 1$, where *e* is fixed in \mathbb{R}^2 such that |e| = 1. Then, $v \in H^1_{0,rad}(B_1, w)$ for each $u \in E$. Moreover, using the fact that $||u|| \le 1$, we have that $||v||_{H^1_{0,rad}(B_1,w)} \le 1$. Taking $\epsilon > 0$ sufficiently small satisfying $\alpha(1 + \epsilon) < \alpha_{\beta}^*$, we can find $C_{\epsilon} > 0$ such that

$$|u(x)|^{2/(1-\beta)} \le (1+\epsilon)|v(x)|^{2/(1-\beta)} + C_{\epsilon}|u(e)|^{2/(1-\beta)}.$$

Then,

$$\int_{B_1} \left[\exp((\alpha + h(|x|))|u|^{2/(1-\beta)}) - 1 \right] dx \le \int_{B_1} \exp((\alpha + h(|x|))|u|^{2/(1-\beta)}) dx$$

Electronic Research Archive

L

$$\leq \int_{B_1} \exp((\alpha + h(|x|))((1+\epsilon)|v(x)|^{2/(1-\beta)} + C_{\epsilon}|u(e)|^{2/(1-\beta)})) dx$$

$$\leq \sup_{|x|\leq 1} \exp((\alpha + h(|x|))C_{\epsilon}|u(e)|^{2/(1-\beta)}) \int_{B_1} \exp(((1+\epsilon)\alpha + (1+\epsilon)h(|x|))|v(x)|^{2/(1-\beta)}) dx.$$

Using the continuity of *h* and Lemma 2.1, there exists $C_4 > 0$ such that

$$\sup_{|x|\leq 1} \exp\left(\left(\alpha + h(|x|)\right)C_{\epsilon}|u(e)|^{2/(1-\beta)}\right) \leq C_4.$$

Therefore,

$$\int_{B_1} \left[\exp((\alpha + h(|x|))|u|^{2/(1-\beta)}) - 1 \right] dx \le C_4 \int_{B_1} \exp(\alpha_\beta^* + (1+\epsilon)h(|x|))|v(x)|^{2/(1-\beta)}) dx.$$
(2.6)

Note that the function $h_{\epsilon}(r) = (1 + \epsilon)h(r)$ defined on $r \in [0, 1)$ satisfies the conditions of Proposition 1.1 and using the fact that $v \in H^1_{0,rad}(B_1, w)$, we can find $C_5 > 0$ such that

$$\int_{B_1} \left[\exp\left((\alpha + h(|x|)) |u|^{2/(1-\beta)} \right) - 1 \right] dx \le C_4 \sup_{\substack{v \in H_{0, \text{rad}}^1(B_1, w) \\ \|v\|_{B_1, w} \le 1}} \int_{B_1} \exp\left((\alpha_\beta^* + h_\epsilon(|x|)) |v(x)|^{2/(1-\beta)} \right) dx \le C_5.$$
(2.7)

Using the above inequality and (2.5), we obtain C > 0, independent of the election of $u \in E$, satisfying

$$\int_{\mathbb{R}^2} \left[\exp\left((\alpha + h(|x|)) |u|^{2/(1-\beta)} \right) - 1 \right] dx \le C.$$

Therefore, the inequalities (1.9) and (1.10) follow. Moreover, we consider the sequence $(\psi_k) \subset E$ defined as

$$\psi_{k}(x) = \left(\frac{1}{\alpha_{\beta}^{*}}\right)^{(1-\beta)/2} \begin{cases} k^{\frac{2}{1-\beta}} \ln\left(\frac{1}{|x|^{2}}\right)^{1-\beta}, & 0 \le |x| \le e^{-k/2}, \\ k^{\frac{1-\beta}{2}}, & e^{-k/2} \le |x| \le 1, \\ 0, & |x| > 1. \end{cases}$$

Note that $||\psi_k|| = 1$ for each $k \ge 1$, and for $\alpha > \alpha_{\beta}^*$, it follows that

$$\int_{\mathbb{R}^2} \exp\left(\left(\alpha + h(|x|)\right)|\psi_k|^{2/(1-\beta)}\right) dx \ge \int_{B_1} \exp\left(\alpha |\psi_k|^{2/(1-\beta)}\right) dx \ge 2\pi \int_{e^{-k}/2}^1 \exp\left(\frac{\alpha}{\alpha_\beta^*}k\right) r \, dr.$$

Consequently,

$$\int_{\mathbb{R}^2} \exp\left(\left(\alpha + h(|x|)\right) |\psi_k|^{2/(1-\beta)}\right) dx \ge \pi e^{k\left(\frac{\alpha}{\alpha_\beta^*} - 1\right)} \left(e^k - 1\right) \to +\infty, \quad \text{as } k \to \infty,$$

and the proof of the last assertion follows.

Remark 2.3.

- (a) An example of a function h that satisfies conditions $(h_1) (h_3)$ is given by $h(r) = r^{\xi}$ for some $0 < \xi < a/(1 \beta) 2$ where a and β are given in (1.8).
- (b) As it was observed in [31], the assertions of Theorem 1.2 are no longer valid when considering the space of nonradial functions $H^1(\mathbb{R}^2, w)$.

Electronic Research Archive

3. Mountain pass structure

We now outline several results necessary for utilizing variational methods.

Lemma 3.1. Assume that (H_1) , (H_2) , and (H_4) hold. Then, there exist σ , $\rho > 0$, such that

 $J(u) \ge \sigma$, for all $u \in E$ with $||u|| = \rho$.

Proof. Given q > 4/a and $\epsilon > 0$, from (H_1) , (H_2) , and (H_4) , there exists c > 0 such that

$$|F(x,s)| \le \epsilon |s|^2 + c|s|^q \exp\left[\left((2\alpha_0 + h(|x|))|s|^{2/(1-\beta)}\right) - 1\right], \text{ for all } (x,s) \in \mathbb{R}^2 \times \mathbb{R}.$$

By the Cauchy-Schwarz inequality and the inequality $(e^w - 1)^2 \le e^{2w} - 1$ for all $w \ge 0$, we obtain

$$\int_{\mathbb{R}^2} F(x,u) \, dx \le \epsilon ||u||_2^2 + c ||u||_{2q}^q \left(\int_{\mathbb{R}^2} \left[\exp\left((4\alpha_0 + 2h(|x|))|u|^{2/(1-\beta)} \right) - 1 \right] dx \right)^{1/2}. \tag{3.1}$$

Using Lemma 2.1, for *u* in *E* with $||u|| \le 1$, one has

$$|u(x)| \le \frac{1}{\sqrt{2\pi a}|x|^{a/2}}, \text{ for all } |x| \ge 1.$$

By (h_3) , there exist $R_0 > 1$ and $c_1 > 0$ such that

$$h(|x|) \le c_1 |x|^{\xi}$$
, for all $|x| \ge R_0$.

Therefore, we can get $C_1 > 0$ such that

$$(4\alpha_0 + 2h(|x|))|u|^{2/(1-\beta)} \le \frac{4\alpha_0}{(2\pi a)^{1/(1-\beta)}|x|^{\frac{a}{1-\beta}}} + \frac{2c_1}{(2\pi a)^{1/(1-\beta)}|x|^{\frac{a}{1-\beta}-\xi}} \le \frac{C_1}{|x|^{\eta}}, \quad \text{for all} \quad |x| \ge R_0,$$

where $\eta = \min\{a/(1-\beta) - \xi, a/(1-\beta)\} > 2$, which implies the existence of $C_2 > 0$ such that

$$\int_{\mathbb{R}^2 \setminus B_{R_0}} \left[\exp\left((4\alpha_0 + 2h(|x|)) |u|^{2/(1-\beta)} \right) - 1 \right] dx \le 2\pi \int_{R_0}^{+\infty} r\left(\exp(C_1 r^{-\eta}) - 1 \right) dr = C_2.$$
(3.2)

Let $h_0 = \max_{0 \le r \le R_0} h(r)$. Using Theorem 1.2, we can get $C_3 > 0$ such that

$$\int_{B_{R_0}} \left[\exp\left((4\alpha_0 + 2h(|x|))|u|^{2/(1-\beta)} \right) - 1 \right] dr \leq \int_{B_{R_0}} \left[\exp\left((4\alpha_0 + 2h_0)|u|^{2/(1-\beta)} \right) - 1 \right] dx \\
\leq \int_{B_{R_0}} \left[\exp\left((4\alpha_0 + 2h_0)||u||^{2/(1-\beta)} \left(\frac{|u|}{||u||} \right)^{2/(1-\beta)} \right) - 1 \right] dx \leq C_3,$$
(3.3)

provided that $||u|| \le \rho_1$ for some $\rho_1 > 0$ such that $(4\alpha_0 + 2h_0)\rho_1^{2/(1-\beta)} < \alpha_{\beta}^*$. From (3.1)–(3.3), and Lemma 2.2, there exists C > 0 such that

$$\int_{\mathbb{R}^2} F(x,u) \, dx \le \epsilon C ||u||^2 + C ||u||^q,$$

provided that $||u|| \le \rho_0$ for some $0 < \rho_0 \le \min\{1, \rho_1\}$. Then,

$$J(u) \ge \frac{1}{2} ||u||^2 - \int_{\mathbb{R}^2} F(x, u) \, dx \ge \left(\frac{1}{2} - \epsilon C\right) ||u||^2 - C ||u||^q.$$

Note that we can assume that $\epsilon > 0$ satisfies $(1/2 - \epsilon C) \ge 1/4$. Consequently, it is possible to choose $\rho > 0$ and $\sigma > 0$ with $0 < \rho \le \rho_0$ such that $J(u) \ge \sigma > 0$, for all $u \in E$ with $||u|| = \rho$.

Electronic Research Archive

The next lemma follows the same lines as [30, Lemma 3.3].

Lemma 3.2. Suppose that $(H_1) - (H_2)$ hold. If $e_0 \neq 0$ in E, then there exists t > 0 large enough such that $e = te_0$ satisfies

$$J(e) < 0 \quad and \quad \|e\| > \rho,$$

where $\rho > 0$ is given by Lemma 3.1.

4. Palais-Smale sequence

In this section, we show some results related to the Palais-Smale sequences. Let us recall that we say that $(u_n) \subset E$ is a $(PS)_c$ sequence for the functional J if

$$J(u_n) \to c \text{ and } \|J'(u_n)\|_{E^*} \to 0.$$
 (4.1)

Moreover, if (u_n) satisfying (4.1) possesses a convergent subsequence, we say that (u_n) satisfies the Palais-Smale condition at the level *c*.

The following lemma asserts that each Palais-Smale sequence associated with J is bounded.

Lemma 4.1. Assume $(H_1) - (H_4)$. Then any Palais-Smale sequence for the functional J is bounded in *E*.

Proof. Using (H_3) , we obtain

$$J(u_n) - \frac{1}{\mu}J'(u_n)u_n = \left(\frac{1}{2} - \frac{1}{\mu}\right)||u_n||^2 - \frac{1}{\mu}\int_{\mathbb{R}^2} \left(\mu F(x, u_n) - f(x, u_n)u_n\right) dx \ge \left(\frac{1}{2} - \frac{1}{\mu}\right)||u_n||^2.$$

Using (4.1), we have

 $J(u_n) = c + o_n(1)$ and $||J'(u_n)||_{E^*} = o_n(1)$.

Therefore, for *n* sufficiently large, we obtain

$$\left(\frac{1}{2} - \frac{1}{\mu}\right) ||u_n||^2 \le c + o_n(1) + o_n(1) ||u_n||$$

Consequently, the sequence (u_n) is bounded in *E*.

Lemma 4.2. Assume that $(H_1) - (H_4)$ are satisfied. Then, J satisfies the Palais-Smale condition at the level c, where

$$c < \left(\frac{1}{2} - \frac{1}{\mu}\right) \left(\frac{\alpha_{\beta}^*}{\alpha_0}\right)^{1-\beta}$$

Proof. Take a Palais-Smale sequence $(u_n) \subset E$ for J at the level c of J. Using Lemma 4.1, we can find $u \in E$, up to a subsequence, such that $u_n \rightarrow u$ weakly in E. Setting $v_n := u_n - u$, we have that $v_n \rightarrow 0$ weakly in E. Then,

$$\int_{\mathbb{R}^2} w(x) \nabla u_n \nabla v_n \, dx - \int_{\mathbb{R}^2} f(x, u_n) v_n \, dx = J'(u_n) v_n = o_n(1)$$

and

$$\int_{\mathbb{R}^2} w(x) \nabla u_n \nabla v_n \, dx = \|u_n\|^2 - \|u\|^2 + o_n(1).$$

Electronic Research Archive

Therefore,

$$||u_n||^2 - ||u||^2 = \int_{\mathbb{R}^2} f(x, u_n) v_n \, dx + o_n(1). \tag{4.2}$$

It remains to show that, up to a subsequence, the integral in (4.2) tends to zero as $n \to +\infty$. From Lemma 4.1 and the assumption on *c*, we obtain

$$\left(\frac{1}{2} - \frac{1}{\mu}\right) \|u_n\|^2 = c + o_n(1) < \left(\frac{1}{2} - \frac{1}{\mu}\right) \left(\frac{\alpha_\beta^*}{\alpha_0}\right)^{1-\beta} + o_n(1).$$

Thus, without loss of generality, we can find $\delta > 0$ such that

$$\|u_n\|^{2/(1-\beta)} \le \frac{\alpha_{\beta}^*}{\alpha_0} - \delta, \quad \text{for all } n \in \mathbb{N}.$$
(4.3)

Now, take m > 1 and $\epsilon > 0$ such that

$$m(\alpha_0 + 2\epsilon) \Big(\frac{\alpha_\beta^*}{\alpha_0} - \delta\Big) < \alpha_\beta^*. \tag{4.4}$$

From assumptions on f, there exists $C_{\epsilon} > 0$ such that

$$|f(x,s)| \le \epsilon |s| + C_{\epsilon} \Big[\exp\Big((\alpha_0 + \epsilon + h(|x|)) |s|^{2/(1-\beta)} \Big) - 1 \Big], \quad \text{for all} \quad (x,s) \in \mathbb{R}^2 \times \mathbb{R}.$$

By the Hölder inequality with 1/m + 1/m' = 1 and the identity $(e^r - 1)^m \le e^{rm} - 1$ for all $r \ge 0$, we obtain

$$\int_{\mathbb{R}^2} |f(x, u_n)v_n| \, dx \le \epsilon ||u_n||_2 ||v_n||_2 + C_\epsilon ||v_n||_{m'} \left(\int_{\mathbb{R}^2} \left[\exp(m(\alpha_0 + \epsilon + h(|x|))|u_n|^{2/(1-\beta)}) - 1 \right] \, dx \right)^{1/m}.$$
(4.5)

Using the continuity of *h* and h(0) = 0, there exists $0 < r_1 < 1$ such that

$$h(|x|) < \epsilon$$
, for all $|x| \le r_1$.

Thus,

$$\int_{B_{r_1}} \left[\exp(m(\alpha_0 + \epsilon + h(|x|))|u_n|^{2/(1-\beta)}) - 1 \right] dx \le \int_{B_{r_1}} \left[\exp(m(\alpha_0 + 2\epsilon)||u_n||^{2/(1-\beta)} (\frac{|u_n|}{||u_n||})^{2/(1-\beta)}) - 1 \right] dx.$$

Using (4.3), (4.4), and Theorem 1.2, we can get $C_1 > 0$ such that

$$\int_{B_{r_1}} \left[\exp(m(\alpha_0 + \epsilon + h(|x|))|u_n|^{2/(1-\beta)}) - 1 \right] dx \le \int_{B_{r_1}} \left[\exp(\alpha_\beta^* (\frac{|u_n|}{||u_n||})^{2/(1-\beta)}) - 1 \right] dx \le C_1.$$
(4.6)

By (h_3) , there exist c > 0 and $r_2 > 1$ such that

$$h(r) \le c|x|^{\xi}$$
, for all $|x| \ge r_2$

Using the above inequality, the boundedness of the sequence ($||u_n||$), and Lemma 2.1, there exists $C_2 > 0$ such that

$$m(\alpha_0 + \epsilon + h(|x|))|u_n(x)|^{2/(1-\beta)} \le \frac{C_2}{|x|^{\eta}}, \text{ for all } n \ge 1 \text{ and } |x| \ge r_2,$$

Electronic Research Archive

where $\eta = \min\{a/(1-\beta) - \xi, a/(1-\beta)\} > 2$, which implies the existence of $C_3 > 0$ such that

$$\int_{\mathbb{R}^2 \setminus B_{r_2}} \left[\exp(m(\alpha_0 + \epsilon + h(|x|))|u_n|^{2/(1-\beta)}) - 1 \right] dx \le 2\pi \int_{r_2}^{+\infty} \left[\exp(C_2|x|^{-\eta}) - 1 \right] dr = C_3.$$
(4.7)

Since the sequence (u_n) is bounded in *E*, by Lemma 2.1, one has

 $|u_n(x)| \le M_0$, for all $r_1 \le |x| \le r_2$ and for all $n \ge 1$.

Additionally, since *h* is continuous, there exists $C_3 > 0$ such that

$$\int_{B_{r_2} \setminus B_{r_1}} \left[\exp(m(\alpha_0 + \epsilon + h(|x|))|u_n|^{2/(1-\beta)}) - 1 \right] dx \le C_3.$$
(4.8)

Using (4.6)–(4.8), the integral on the right-hand side of (4.5) is bounded. Moreover, by the compact embeddings $E \hookrightarrow L^2(\mathbb{R}^2)$ and $E \hookrightarrow L^{m'}(\mathbb{R}^2)$, and the weakly convergence $v_n \rightharpoonup 0$ in E, up to a subsequence, we obtain

$$\int_{\mathbb{R}^2} |f(x, u_n)v_n| \, dx \le \epsilon ||u||_2 ||v_n||_2 + C ||v_n||_{m'} \to 0, \quad \text{as} \quad n \to +\infty,$$

and the lemma follows.

5. Proof of Theorem 1.3

First, we will show that S_p is attained in a function in E. Consider a sequence $(u_k) \subset E$ such that

$$\int_{\mathbb{R}^2} |u_k|^p \, dx = 1 \qquad \text{and} \qquad \left(\int_{\mathbb{R}^2} w(x) |\nabla u_k|^2 \, dx \right)^{1/2} \to S_p.$$

Therefore, (u_k) is bounded in *E*. Thus, we can assume that there exists some $u_p \in E$ such that $u_k \rightarrow u_p$ weakly in *E*, $u_k \rightarrow u_p$ strongly in $L^p(\mathbb{R}^2)$, and $u_k(x) \rightarrow u_p(x)$ almost everywhere in \mathbb{R}^2 . Hence, $||u_p||_p = 1$ and $||u_p|| \le \liminf_{k \to +\infty} ||u_k|| = S_p$. Noticing that $S_p \le ||u_p||$, and taking the absolute value of the functions, we can guarantee that $u_p \ge 0$. Thus there exists $u_p \in E$ such that $u(x) \ge 0$ in \mathbb{R}^2 with $||u_p||_p = 1$ satisfying

$$S_{p} = \inf_{0 \neq u \in H_{rad}^{1}(\mathbb{R}^{2}, w)} \frac{\left(\int_{\mathbb{R}^{2}} w(x) |\nabla u|^{2} dx\right)^{1/2}}{\left(\int_{\mathbb{R}^{2}} |u|^{p} dx\right)^{1/p}} = ||u_{p}||.$$

This will be the element e_0 considered in Lemma 3.2. From Lemmas 3.1 and 3.2, based on the wellknown pass mountain theorem by Ambrosetti-Rabinowitz [43,44]), we obtain a Palais-Smale $(u_n) \subset E$ at the level $d \ge \sigma$, where σ is given by Lemma 3.1, and d > 0 is given by

$$d = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} J(\gamma(t)),$$

and

$$\Gamma = \{ \gamma \in C([0, 1], E) : \gamma(0) = 0, \gamma(1) = e \}.$$

Electronic Research Archive

*

From (H_5) , we get

$$J(tu_p) = \frac{t^2}{2} ||u_p||^2 - \int_{\mathbb{R}^2} F(x, tu_p) \, dx \le \frac{t^2}{2} ||u_p||^2 - \frac{C_p t^p}{p} \int_{\mathbb{R}^2} |u_p|^p \, dx.$$

By the assumption on C_p , we obtain

$$\sup_{t\geq 0} J(tu_p) \le \max_{t\geq 0} \left\{ \frac{t^2 S_p^2}{2} - \frac{C_p t^p}{p} \right\} = \frac{(p-2) S_p^{2p/(p-2)}}{2p C_p^{2/(p-2)}} < \left(\frac{1}{2} - \frac{1}{\mu}\right) \left(\frac{\alpha_\beta^*}{\alpha_0}\right)^{1-\beta}.$$
(5.1)

Note that $e = t_0 u_p$ with $t_0 > 0$ is given by Lemma 3.2. Consider $\gamma_0 \in \Gamma$ defined by $\gamma_0(t) = tt_0 u_p$. By (5.1), we get

$$d = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} J(\gamma(t)) \le \max_{t \in [0,1]} J(\gamma_0(t)) \le \max_{t \in [0,1]} J(tt_0 u_p) \le \max_{t \ge 0} J(tu_p) < \Big(\frac{1}{2} - \frac{1}{\mu}\Big) \Big(\frac{\alpha_{\beta}}{\alpha_0}\Big)^{1-\beta}.$$

Using Lemma 4.2, the sequence (u_n) , up to a sequence, is convergent, that is, we can get $u \in E$ such that $u_n \to u$ in *E*. By the continuity of *J* and *J'*, we have that J(u) = d and J'(u) = 0. Therefore, *u* is a solution of the problem (1.12). Moreover, using the fact that $J(u) = d \ge \sigma$, we conclude that *u* is nontrivial.

6. Conclusions

In this paper, we presented a new type of Trudinger-Moser inequality defined on a radial weighted Sobolev space. Additionally, as an application of the above result, by applying the mountain pass theorem, we found nontrivial weak solutions for a nonlinear equation. Our main contribution is to extend previous results by establishing equations defined on \mathbb{R}^2 , involving a nonlinear equation with supercritical exponential growth.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This research was supported by the Universidad Nacional Mayor de San Marcos RR N° 05557-R-22 and project number B22140231. The author would like to thank the anonymous reviewers for all remarks that corrected and improved the previous version of the paper.

Conflict of interest

The authors declare there are no conflicts of interest.

References

- 1. H. Brézis, Elliptic equations with limiting Sobolev exponents, *Comm. Pure Appl. Math.*, **39** (1986), 517–539.
- H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, *Comm. Pure Appl. Math.*, 36 (1983), 437–477. https://doi.org/10.1002/cpa.3160360405
- 3. T. Bartsh, M. Willem, On an elliptic equation with concave and convex nonlinearities, *Proc. Amer. Math. Soc.*, **123** (1995), 3555–3561.
- 4. A. Capozzi, D. Fortunato, G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, *Ann. Henri Poincaré*, **2** (1985), 463–470.
- 5. W. Kryszewski, A. Szulkin, Generalized linking theorem with an application to a semilinear Schrödinger equation, *Adv. Differ. Equations*, **3** (1998), 441–472. https://doi.org/10.57262/ade/1366399849
- 6. W. Y. Ding, W. M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, *Arch. Rational Mech. Anal.*, **91** (1986), 283–308. https://doi.org/10.1007/BF00282336.
- J. P. G. Azorero, I. P. Alonso, Existence and non-uniqueness for the p-Laplacian, *Comm. Partial Differ. Equations*, 12 (1987), 1389–1430. https://doi.org/10.1080/03605308708820534
- 8. J. V. Gonçalves, C. O. Alves, Existence of positive solutions for m-Laplacian equations in \mathbb{R}^N involving critical Sobolev exponents, *Nonlinear Anal.*, **32** (1998), 53–70. https://doi.org/10.1016/S0362-546X(97)00452-5
- 9. E. A. B de Silva, S. H. M. Soares, Quasilinear Dirichlet problems in ℝ^N with critical growth, *Nonlinear Anal.*, **43** (2001), 1–20. https://doi.org/10.1016/S0362-546X(99)00128-5
- 10. A. Adimurthi, Existence of positive solutions of the semilinear Dirichlet Problem with critical growth for the N-Laplacian, *Ann. Sc. Norm. Sup. Pisa*, **17** (1990), 393–413.
- 11. J. M. do Ó, N-Laplacian equations in \mathbb{R}^N with critical growth, *Abstr. Appl. Anal.*, **2** (1997), 301–315. https://doi.org/10.1155/S1085337597000419
- 12. L. Baldelli, R. Filippucci, Existence of solutions for critical (p,q)-Laplacian equations in \mathbb{R}^N , *Commun. Contemp. Math.*, **9** (2022), 2150109. https://doi.org/10.1142/S0219199721501091
- L. Gongbao, Z. Guo, Multiple solutions for the p&q-Laplacian problem with critical exponent, *Acta Math. Sci. Ser. B Engl. Ed.*, **29** (2009), 903–918. https://doi.org/10.1016/S0252-9602(09)60077-1
- 14. M. Calanchi, B. Ruf, On a Trudinger-Moser type inequality with logarithmic weights, *J. Differ. Equations*, **258** (2015), 1967–1989. https://doi.org/10.1016/j.jde.2014.11.019
- 15. Y. R. S. Leuyacc, Standing waves for quasilinear Schrodinger equations involving double exponential growth, *AIMS Math.*, **8** (2023), 1682?1695. https://doi.org/10.3934/math.2023086
- 16. Y. R. S. Leuyacc, Hamiltonian elliptic system involving nonlinearities with supercritical exponential growth, *AIMS Math.*, **8** (2023), 19121–19141. https://doi.org/10.3934/math.2023976

- 17. Y. R. S. Leuyacc, Singular Hamiltonian elliptic systems involving double exponential growth in dimension two, *Partial Differ. Equations Appl. Math.*, **10** (2024), 100681. https://doi.org/10.1016/j.padiff.2024.100681
- 18. S. Pohožaev, The Sobolev embedding in the special case pl = n, in *Proceedings of the Technical Science Conference on Advance Science Research Mathematics Sections*, (1965), 158–170.
- 19. N. Trudinger, On embedding into Orlicz spaces and some applications, *J. Math. Mech.*, **17** (1967), 473–483.
- 20. V. Yudovich, Some estimates connected with integral operators and with solutions of elliptic equations, *Dokl. Akad. Nauk SSSR*, **138** (1961), 805–808.
- 21. J. Moser, A sharp form of an inequality by N. Trudinger, *Indiana Univ. Math. J.*, **20** (1970), 1077–1092.
- 22. S. L. Yadava, Multiplicity results for semilinear elliptic equations in a bounded domain of \mathbb{R}^2 involving critical exponent, *Ann. Sc. Norm. Super. Pisa-Cl. Sci.*, **27** (1990), 481–504.
- 23. D. G. de Figueiredo, O. H. Miyagaki, B. Ruf, Elliptic equations in \mathbb{R}^2 with nonlinearities in the critical growth range, *Calc. Var. Partial Differ. Equations*, **3** (1995), 139–153. https://doi.org/10.1007/BF01205003
- 24. D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in ℝ², *Comm. Partial Differ. Equations*, **17** (1992), 407–435. https://doi.org/10.1080/03605309208820848
- 25. M. de Souza, J. M. do Ó, On a class of singular Trudinger-Moser type inequalities and its applications, *Math. Nachr.*, **284** (2011), 1754–1776. https://doi.org/10.1016/j.aml.2012.05.007
- A. Alvino, V. Ferone, G. Trombetti, Moser-Type Inequalities in Lorentz Spaces, *Potential Anal.*, 5 (1996), 273–299. https://doi.org/10.1007/BF00282364
- H. Brézis, S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, *Comm. Partial Differ. Equations*, 5 (1980), 773–789. https://doi.org/10.1080/03605308008820154
- D. Cassani, C. Tarsi, A Moser-type inequalities in Lorentz-Sobolev spaces for unbounded domains in ℝ^N, *Asymptotic Anal.*, 64 (2009), 29–51. https://doi.org/10.3233/ASY-2009-0934
- 29. G. Lu, H. Tang, Sharp singular Trudinger-Moser inequalities in Lorentz-Sobolev spaces, *Adv. Nonlinear Stud.*, **16** (2016), 581–601. https://doi.org/10.1515/ans-2015-5046
- Y. R. S. Leuyacc, Supercritical Trudinger-Moser inequalities with logarithmic weights in dimension two, AIMS Math., 8 (2023), 18354–18372. https://doi.org/10.3934/math.2023933
- Q. A. Ngô, V. H. Nguyen, Supercritical Moser-Trudinger inequalities and related elliptic problems, *Calc. Var. Partial Differ. Equations*, **59** (2020), 69. https://doi.org/10.1007/s00526-020-1705-y
- 32. S. Aouaoui, A new Trudinger-Moser type inequality and an application to some elliptic equation with doubly exponential nonlinearity in the whole space ℝ², *Arch. Math.*, **114** (2020), 199–214. https://doi.org/10.1007/s00013-019-01386-7
- 33. O. Kavian, Introduction à la théorie des Points Critiques et Applications aux Problèmes Elliptiques, Springer-Verlag, Paris, 1993.

Electronic Research Archive

- 34. F. S. B. Albuquerque, C. O. Alves, E. S. Medeiros, Nonlinear Schrödinger equation with unbounded or decaying radial potentials involving exponential critical growth in ℝ², *J. Math. Anal. Appl.*, **409** (2014), 1021–1031. https://doi.org/10.1016/j.jmaa.2013.07.005.
- 35. B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in ℝ², *J. Funct. Anal.*, 219 (2005), 340–367. https://doi.org/10.1016/j.jfa.2004.06.013
- B. Ruf, F. Sani, Ground states for elliptic equations with exponential critical growth, in *Geometric Properties for Parabolic and Elliptic PDE's* (eds. R. Magnanini, S. Sakaguchi, A. Alvino), Springer INdAM Series, Springer, Milano, (2013), 321–349.
- D. Cassani, C. Tarsi, Existence of solitary waves for supercritical Schrödinger systems in dimension two, *Calc. Var. Partial Differ. Equations*, 54 (2015), 1673–1704. https://doi.org/10.1007/s00526-015-0840-3
- Y. R. S. Leuyacc, S. H. M. Soares, On a Hamiltonian system with critical exponential growth, *Milan J. Math.*, 87 (2019), 105–140. https://doi.org/10.1007/s00032-019-00294-3
- S. H. M. Soares, Y. R. S. Leuyacc, Singular Hamiltonian elliptic systems with critical exponential growth in dimension two, *Math. Nachr.*, 292 (2019), 137–158. https://doi.org/10.1007/s00032-019-00294-3
- 40. H. Zhao, Y. Guo, Y. Shen, Singular type trudinger-moser inequalities with logarithmic weights and the existence of extremals, *Mediterr. J. Math.*, **21** (2024), 50. https://doi.org/0.1007/s00009-023-02582-0
- 41. Y. R. S. Leuyacc, A class of Schrödinger elliptic equations involving supercritical exponential growth, *Boundary Value Probl.*, **39** (2023), 17. https://doi.org/10.1186/s13661-023-01725-2.
- 42. W. A. Strauss, Existence of solitary waves in higher dimension, *Commun. Math. Phys.*, **55** (1977), 149–162. https://doi.org/10.1007/BF01626517
- 43. P. H. Rabinowitz, *Minimax Methods in Critical Point Theory with Applications to Differential Equations*, American Mathematical Society, Providence, RI, 1986.
- 44. M. Willem, *Minimax Theorems*, Boston: Birkhäuser, 1996.

 \bigcirc 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)