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Abstract: In this work, we investigated the existence of nontrivial weak solutions for the equation

−div(w(x)∇u) = f (x, u), x ∈ R2,

where w(x) is a positive radial weight, the nonlinearity f (x, s) possesses growth at infinity of the type
exp

(
(α0 + h(|x|)

)
|s|2/(1−β)), with α0 > 0, 0 < β < 1 and h is a continuous radial function that may be

unbounded at infinity. To show the existence of weak solutions, we used variational methods and a
new type of the Trudinger-Moser inequality defined on the whole two-dimensional space.

Keywords: Trudinger-Moser inequality; supercritical exponential growth; mountain pass theorem;
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1. Introduction

We begin recalling the following stationary Schrödinger equation:{
−∆u = f (x, u), in Ω ⊂ RN

u = 0 on ∂Ω.
(1.1)

To treat the Eq (1.1) variationally, the Sobolev embedding theorems restrict the nonlinearity f to be
of the type | f (x, u)| ≤ c(1 + |u|q−1), with 1 < q ≤ 2∗ = 2N

N−2 and N ≥ 3. Some pioneering results
considering the above nonlinearity in a bounded domain Ω ⊂ RN were treated by Brézis [1], Brézis-
Nirenberg [2], Bartsch-Willem [3], and Capozzi-Fortunato-Palmieri [4]. A natural extension of the
equation defined on the whole space RN , considering the nonlinearity | f (x, u)| ≤ c(|u| + |u|q−1), with
1 < q ≤ 2∗ = 2N

N−2 in N ≥ 3, was studied by Kryszewski and Szulkin [5], and Ding and Ni [6],
among others. For this case, the Eq (1.1) needs to be rewritten as −∆u + V(x)u = f (x, u) for x ∈ RN ,
where V(x) is used to address the compactness properties. Extensions of Eq (1.1) include the p-
Laplacian operator, where ∆u is replaced by ∆pu := div(|∇u|p−2∇u). For instance, equations with
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nonlinearities exhibiting critical Sobolev exponent growth are addressed in [7] for bounded domains
in RN , with similar considerations in the whole space discussed in [8, 9]. Critical exponential growth
is considered in [10] for bounded domains and in [11] for the whole space. Additionally, equations
involving the (p, q)-Laplacian operator, which address critical Sobolev exponents and related nonlinear
growth, can be found in [12, 13]. Another type of equation involves a weight operator div

(
w(x)∇u

)
, as

seen in [14, 15], with Hamiltonian systems using this operator discussed in [16, 17].

In dimension N = 2, Sobolev embedding asserts that H1
0(Ω) ⊂ Lq(Ω) for q ≥ 1. Therefore, there is

no restriction on (1.1) for the values q > 1 in | f (x, u)| ≤ c(1+ |u|q−1). Additionally, some examples show
that H1

0(Ω) 1 L∞(Ω). For this case, the maximal growth of the nonlinearity f is of the exponential type
(see Pohozaev [18], Trudinger [19], and Yudovich [20]). More precisely, it has been proven that

eα|u|
2
∈ L1(Ω), for all u ∈ H1

0(Ω) and α > 0. (1.2)

Furthermore, Moser [21] showed that there exists a positive constant C = C(α,Ω) such that

sup
u∈H1

0 (Ω)
∥∇u∥2≤1

∫
Ω

eα|u|
2

dx

≤ C, α ≤ 4π,
+∞, α > 4π.

(1.3)

Equation (1.1) with nonlinearities involving exponential growth have been studied by Adimurthi
[10], Adimurthi-Yadava [22], and de Figueiredo, Miyagaki, and Ruf [23], among others. Inequality
(1.3) is called the Trudinger-Moser inequality. These types of results have been extensively investi-
gated by various authors: in Sobolev spaces over the whole space R2 [24] and in Sobolev spaces for
singular versions [25]; in Lorentz-Sobolev spaces within bounded domains [26,27], in Lorentz-Sobolev
spaces over the whole space RN [28], and for singular versions in Lorentz-Sobolev spaces [29]; and in
weighted Sobolev spaces [14, 30]. Additionally, supercritical versions are discussed in [31].

Now, we introduce a supercritical version of the Trudinger-Moser inequality. Let Ω be a smooth
domain in R2 and w be a weight defined on Ω. We shall denote by H1

0,rad(Ω,w) the radial Sobolev
weighted space obtained as the closure of all the radially symmetric functions in C∞0 (Ω) with respect
to the norm

∥u∥Ω,w := ∥u∥H1
0,rad(Ω,w) =

(∫
Ω

w(x)|∇u|2 dx
) 1

2

.

In particular, if Ω is the whole space R2, we denote the above Sobolev space as H1
rad(R2,w). Trudinger-

Moser inequalities for radial Sobolev spaces with logarithmic weights defined on the unit ball B1 in R2

were treated by Calanchi and Ruf [14]. Considering w(x) =
(

log 1/|x|
)β and 0 ≤ β < 1, the mentioned

authors proved that∫
B1

eα|u|
2

1−β dx < +∞, for all u ∈ H1
0,rad(B1,w) and for all α > 0. (1.4)

Furthermore, setting α∗β = 2
[
2π(1 − β)

] 1
1−β , there exists C = C(α, β) > 0 such that

sup
u∈H1

0,rad(B1,w)

∥u∥B1 ,w≤1

∫
B1

eα|u|
2

1−β dx

≤ C, α ≤ α∗β,

+∞, α > α∗β.
(1.5)
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A supercritical version of the Trudinger-Moser inequality defined on H1
0,rad(B1) := H1

0,rad(B1, I),
where the weight is the identity function on B1, was proved by Ngô and Nguyen [31]. The mentioned
authors considered the following assumptions:

(h1) h : [0, 1)→ R is a radial function, h(0) = 0 and h(r) > 0 for r ∈ (0, 1).
(h2) There exists some c > 0 such that

h(r) ≤
c
− ln r

, near to 0.

(h′3) There exists γ ∈ (0, 1) such that

h(r) ≤
2γπ ln(1 − r)

ln r
, near to 1.

In [31], it was shown that∫
B1

exp
((
α + h(|x|)

)
|u|2

)
dx < +∞, for all u ∈ H1

0,rad(B1) and for all α > 0. (1.6)

Furthermore, there exists C = C(α, h) > 0 such that

sup
u∈H1

0,rad(B1)

∥u∥B1 ,I≤1

∫
B1

exp
((
α + h(|x|)

)
|u|2

)
dx

≤ C, α ≤ 4π,
= +∞, α > 4π.

(1.7)

Let us consider

(h
′′

3) There exist γ ∈ (0, 1) such that

h(r) ≤
γα∗β ln(1 − r)

ln r
, near to 1.

The next proposition combines the above results.

Proposition 1.1 (See [30]). Assume that h satisfies (h1), (h2), and (h′′3 ), and that w is the weight defined
by w(x) =

(
log 1/|x|

)β for 0 < |x| < 1, where β ∈ [0, 1). Then,∫
B1

exp
((
α + h(|x|)

)
|u|2/(1−β)

)
dx < +∞, for all u ∈ H1

0,rad(B1,w) and for all α > 0.

Furthermore, there exists C = C(α, h) > 0 such that

sup
u∈H1

0,rad(B1,w)

∥u∥B1 ,w≤1

∫
B1

exp
((
α + h(|x|)

)
|u|2/(1−β)

)
dx

≤ C, α < α∗β,

+∞, α > α∗β.

We point out that conditions (h′3) or (h′′3 ) allow the function h(r)→ +∞ as r → 1−, and this motivates
us to say that a function f possesses supercritical exponential growth if there exists α0 > 0 such that

lim
s→+∞

f (x, s)

exp
((
α + h(|x|)

)
|s|2/(1−β)

) = +∞, α < α0,

0, α > α0,
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uniformly on x ∈ R2. The above limit implies that f (x, s) = g(x, s)exp
((
α0 + h(|x|)

)
|s|2/(1−β)

)
, where

lim
s→+∞

g(x, s)

exp
((
α + h(|x|)

)
|s|2/(1−β)

) = 0, uniformly on x ∈ R2, for all α > 0.

Our first objective in this work is to extend Proposition 1.1, in the sense of obtaining a Trudinger-Moser
inequality on the whole space R2. Following [32], we consider the weight

w(x) =


[

ln
( 1
|x|

)]β
, 0 < |x| < 1

|x|a, |x| ≥ 1,
(1.8)

where 0 ≤ β < 1 and a > 2. On h, we assume that

(h3) h(r) > 0 for r ∈ [1,+∞). Moreover, there exist c > 0 and ξ < a/(1 − β) − 2 such that

h(r) ≤ crξ, for r sufficiently large,

where the constants a and β are given by (1.8).

In particular, (h3) allows us to consider the case where h(r) → +∞ as r → +∞. Next, we present our
adaptation of the Trudinger-Moser inequality which will be utilized in our proof of the existence result.

Theorem 1.2. Suppose that h satisfies (h1) − (h3) and that w is the weight defined by (1.8). Then,∫
R2

exp
[((
α + h(|x|)

)
|u|2/(1−β)

)
− 1

]
dx < +∞, for all u ∈ H1

rad(R2,w) and α > 0. (1.9)

Moreover, if α < α∗β, there exists C > 0 satisfying

sup
∥u∥R2 ,w≤1

∫
R2

exp
[((
α + h(|x|)

)
|u|2/(1−β)

)
− 1

]
dx ≤ C. (1.10)

If α > α∗β, it holds that

sup
∥u∥R2 ,w≤1

∫
R2

exp
[((
α + h(|x|)

)
|u|2/(1−β)

)
− 1

]
dx = +∞. (1.11)

In the subsequent section, we will outline the proof of Theorem 1.2. The aim of this study is to find
a nontrivial weak solution to the following stationary Schrödinger equation:

− div(w(x)∇u) = f (x, u), x ∈ R2. (1.12)

Here, w represents the weight defined on (1.8) which allows that f possesses the maximal growth
established in Theorem 1.2. More precisely, we assume the following hypotheses:

(H1) f : R2×R→ R is continuous and possesses radial symmetry in its first variable, namely f (x, s) =
f (y, s) whenever |x| = |y|. Additionally, f (x, s) = 0 for all x ∈ R2 and s ≤ 0.
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(H2) The following limit holds:

lim
s→0

f (x, s)
s
= 0, uniformly on x ∈ R2.

(H3) There exists a constant µ > 2 such that

0 < µF(x, s) := µ
∫ s

0
f (x, t) ≤ s f (x, s), for all x ∈ R2 and for all s > 0.

(H4) There exists a constant α0 > 0 such that

lim
s→+∞

f (x, s)

exp
((
α + h(|x|)

)
|s|2/(1−β)

) = +∞, α < α0,

0, α > α0,

uniformly on x ∈ R2, where h satisfies (h1) − (h3) .

(H5) There exist constants p > 2 and Cp > 0 such that

f (x, s) ≥ Cpsp−1, for all s ≥ 0 and for all x ∈ R2,

where

Cp >

S p
p

(α0

α∗β

)(1−β)(p−2)/2(1
2
−

1
p

)(p−2)/2

(1
2
−

1
µ

)(p−2)/2

and

S p := inf
0,u∈H1

rad(R2,w)

( ∫
R2

w(x)|∇u|2 dx
)1/2

( ∫
R2
|u|p dx

)1/p
.

In the forthcoming text, we shall denote the Hilbert space E := H1
rad(R2,w) equipped with the inner

product defined as

⟨u, v⟩E =
∫
R2

w(x)∇u∇v dx, for all u, v ∈ E,

which induces the norm

∥u∥ := ∥u∥E =
(∫
R2

w(x)|∇u|2 dx
)1/2

.

Additionally, E∗ denotes the dual space of E equipped with its standard norm. We define u ∈ E to be a
weak solution of (1.12) if∫

R2
w(x)∇u∇ϕ dx =

∫
R2

f (x, u)ϕ dx, for all ϕ ∈ E. (1.13)

To find weak solutions of our problem (1.12), we will employ variational methods. For this purpose,
let us consider the functional J : E → R defined as:

J(u) =
1
2

∫
R2

w(x)|∇u|2 dx −
∫
R2

F(x, u) dx.
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Moreover, based on established arguments (see [33]), it follows that J belongs to C1(E,R) and

J′(u)ϕ =
∫
R2

w(x)∇u∇ϕ dx −
∫
R2

f (x, u)ϕ dx, for all u, ϕ ∈ E.

The main result of this article is presented as follows:

Theorem 1.3. Suppose that f satisfies (H1) − (H5) and h satisfies (h1) − (h3). Then, problem (1.12)
possesses a nontrivial weak solution.

We point out that equations or systems with nonlinearities involving the classical Trudinger-Moser
inequalities imply that the growth of f is of type exp(|s|2) as s tends to infinity (see [23–25, 34–36],
among others). Equations considering Trudinger-Moser inequalities on Lorentz-Sobolev spaces allow
us to consider f of the type exp(|s|p) with p > 1 as s tends to infinity (see [1, 37–39]). Equations with
logarithmic weight defined on the unit ball in R2 may have nonlinearities of the form exp(|s|2/(1−β)) for
0 ≤ β < 1 (see [14,16]), exp((α + h(|x|))|s|2) (see [31,40]), or exp

(
α + h(|x|)|s|2/(1−β)

)
(see [16,30,41]).

Furthermore, our existence theorem complements the work in [30] since we consider the whole space
R2. Our main contribution is given by the assumption (H4), which allows us to consider the behavior of
f (x, s) as exp

(
α+ h(|x|)|s|2/(1−β)

)
for some α > 0, as s tends to infinity, where the radial function h may

be unbounded at infinity. Finally, note that the class of functions which satisfy conditions (H1) − (H5)
is not empty, for instance, consider the following function f : R2 × R→ R defined by

f (x, s) =

 Asp−1 + p(1 + |x|ξ)sp−1 exp
((

1 + |x|ξ
)
sp

)
, s ≥ 0

0, s < 0,

for some positive constants a > 2, 0 < β < 1, 0 < ξ < a/(1 − β) − 2, p = 2/(1 − β), and A sufficiently
large.

2. Preliminaries

We begin this section by presenting a version of the Strauss result [42], which follows from [14,32]
and plays an important role to prove our version of the supercritical Trudinger-Moser inequality.

Lemma 2.1 (See [14, 32]). Let u be a function in E. Then,

|u(x)| ≤


(− ln |x|)

1−β
2√

2π(1 − β)
∥u∥, if 0 < |x| < 1,

1
√

2πa|x|a/2
∥u∥, if |x| ≥ 1.

The next lemma is related to the embeddings of the space E into Lebesgue spaces.

Lemma 2.2 (See [32]). The space E is continuously and compactly embedded in Lp(R2) for p > 4/a.
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2.1. Proof of Theorem 1.2

Proof. Let us consider u ∈ E with ∥u∥ ≤ 1 and α < α∗β. By Lemma 2.1, we have

∫
R2\B1

[
exp

((
α + h(|x|)

)
|u|2/(1−β)

)
− 1

]
dx =

+∞∑
k=1

1
k!

∫
R2\B1

[α + h(|x|)]k|u|2k/(1−β) dx

≤

+∞∑
k=1

1
k!

∫
R2\B1

[
α + h(|x|)

]k

|x|
ak

1−β

dx

≤

+∞∑
k=1

2kαk

k!

∫
R2\B1

1

|x|
αk

1−β

dx +
+∞∑
k=1

2k

k!

∫
R2\B1

hk(|x|)

|x|
ak

1−β

dx. (2.1)

Since a > 2(1 − β), there exists C1 > 0 such that∫
R2\B1

1

|x|
ak

1−β

dx ≤
∫
R2\B1

1

|x|
a

1−β
dx = C1, for all k ≥ 1. (2.2)

From (h3), there exist c1 > 0 and R0 > 1 such that

h(|x|) ≤ c1|x|ξ, for all |x| ≥ R0.

Since a > (2 + ξ)(1 − β), we can get C2 > 0 such that∫
R2\BR0

hk(|x|)

|x|
ak

1−β

dx ≤
∫
R2\BR0

ck
1

|x|(
a

1−β−ξ)k
dx ≤ ck

1

∫
R2\BR0

1

|x|
a

1−β−ξ
dx = C2, for all k ≥ 1. (2.3)

Using the continuity of h, we can find c2 > 0 such that h(|x|) ≤ c2 for 1 ≤ |x| ≤ R0. Then, we can get
C3 > 0 such that∫

BR0\B1

hk(|x|)

|x|
αk

1−β

dx ≤
∫

BR0\B1

ck
2

|x|
αk

1−β

dx ≤ ck
2

∫
BR0\B1

1

|x|
a

1−β
dx = C3, for all k ≥ 1. (2.4)

Replacing (2.2)–(2.4) in (2.1), one has∫
R2\B1

[
exp

((
α + h(|x|)

)
|u|2/(1−β)

)
− 1

]
dx ≤ C1e2α + (C2 +C3)e2. (2.5)

On the other hand, consider v(x) = u(x) − u(e) for |x| < 1 and v(x) = 0 for |x| ≥ 1, where e is fixed in
R2 such that |e| = 1. Then, v ∈ H1

0,rad(B1,w) for each u ∈ E. Moreover, using the fact that ∥u∥ ≤ 1, we
have that ∥v∥H1

0,rad(B1,w) ≤ 1. Taking ϵ > 0 sufficiently small satisfying α(1 + ϵ) < α∗β, we can find Cϵ > 0
such that

|u(x)|2/(1−β) ≤ (1 + ϵ)|v(x)|2/(1−β) +Cϵ |u(e)|2/(1−β).

Then, ∫
B1

[
exp

((
α + h(|x|)

)
|u|2/(1−β)

)
− 1

]
dx ≤

∫
B1

exp
((
α + h(|x|)

)
|u|2/(1−β)

)
dx
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≤

∫
B1

exp
((
α + h(|x|)

)(
(1 + ϵ)|v(x)|2/(1−β) +Cϵ |u(e)|2/(1−β))) dx

≤ sup
|x|≤1

exp
(
(α + h(|x|)

)
Cϵ |u(e)|2/(1−β)

) ∫
B1

exp
((

(1 + ϵ)α + (1 + ϵ)h(|x|)
)
|v(x)|2/(1−β)

)
dx.

Using the continuity of h and Lemma 2.1, there exists C4 > 0 such that

sup
|x|≤1

exp
((
α + h(|x|)

)
Cϵ |u(e)|2/(1−β)

)
≤ C4.

Therefore,∫
B1

[
exp

((
α + h(|x|)

)
|u|2/(1−β)

)
− 1

]
dx ≤ C4

∫
B1

exp
(
α∗β + (1 + ϵ)h(|x|)

)
|v(x)|2/(1−β)

)
dx. (2.6)

Note that the function hϵ(r) = (1 + ϵ)h(r) defined on r ∈ [0, 1) satisfies the conditions of Proposition
1.1 and using the fact that v ∈ H1

0,rad(B1,w), we can find C5 > 0 such that∫
B1

[
exp

((
α+h(|x|)

)
|u|2/(1−β)

)
−1

]
dx ≤ C4 sup

v∈H1
0,rad(B1,w)

∥v∥B1 ,w≤1

∫
B1

exp
((
α∗β+hϵ(|x|)

)
|v(x)|2/(1−β)

)
dx ≤ C5. (2.7)

Using the above inequality and (2.5), we obtain C > 0, independent of the election of u ∈ E, satisfying∫
R2

[
exp

((
α + h(|x|)

)
|u|2/(1−β)

)
− 1

]
dx ≤ C.

Therefore, the inequalities (1.9) and (1.10) follow. Moreover, we consider the sequence (ψk) ⊂ E
defined as

ψk(x) =
( 1
α∗β

)(1−β)/2


k

2
1−β ln

( 1
|x|2

)1−β
, 0 ≤ |x| ≤ e−k/2,

k
1−β

2 , e−k/2 ≤ |x| ≤ 1,

0, |x| > 1.

Note that ∥ψk∥ = 1 for each k ≥ 1, and for α > α∗β, it follows that∫
R2

exp
((
α + h(|x|)

)
|ψk|

2/(1−β)
)

dx ≥
∫

B1

exp
(
α|ψk|

2/(1−β)
)

dx ≥ 2π
∫ 1

e−k/2
exp

( α
α∗β

k
)
r dr.

Consequently,∫
R2

exp
((
α + h(|x|)

)
|ψk|

2/(1−β)
)

dx ≥ πe
k
(
α
α∗
β
−1
)(

ek − 1
)
→ +∞, as k → ∞,

and the proof of the last assertion follows.

Remark 2.3.

(a) An example of a function h that satisfies conditions (h1) − (h3) is given by h(r) = rξ for some
0 < ξ < a/(1 − β) − 2 where a and β are given in (1.8).

(b) As it was observed in [31], the assertions of Theorem 1.2 are no longer valid when considering
the space of nonradial functions H1(R2,w).
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3. Mountain pass structure

We now outline several results necessary for utilizing variational methods.

Lemma 3.1. Assume that (H1), (H2), and (H4) hold. Then, there exist σ, ρ > 0, such that

J(u) ≥ σ, for all u ∈ E with ∥u∥ = ρ.

Proof. Given q > 4/a and ϵ > 0, from (H1), (H2), and (H4), there exists c > 0 such that

|F(x, s)| ≤ ϵ |s|2 + c|s|qexp
[((

2α0 + h(|x|)
)
|s|2/(1−β)

)
− 1

]
, for all (x, s) ∈ R2 × R.

By the Cauchy-Schwarz inequality and the inequality (ew − 1)2 ≤ e2w − 1 for all w ≥ 0, we obtain∫
R2

F(x, u) dx ≤ ϵ∥u∥22 + c∥u∥q2q

(∫
R2

[
exp

((
4α0 + 2h(|x|)

)
|u|2/(1−β)

)
− 1

]
dx

)1/2

. (3.1)

Using Lemma 2.1, for u in E with ∥u∥ ≤ 1, one has

|u(x)| ≤
1

√
2πa|x|a/2

, for all |x| ≥ 1.

By (h3), there exist R0 > 1 and c1 > 0 such that

h(|x|) ≤ c1|x|ξ, for all |x| ≥ R0.

Therefore, we can get C1 > 0 such that(
4α0 + 2h(|x|)

)
|u|2/(1−β) ≤

4α0

(2πa)1/(1−β)|x|
a

1−β
+

2c1

(2πa)1/(1−β)|x|
a

1−β−ξ
≤

C1

|x|η
, for all |x| ≥ R0,

where η = min{a/(1 − β) − ξ, a/(1 − β)} > 2, which implies the existence of C2 > 0 such that∫
R2\BR0

[
exp

((
4α0 + 2h(|x|)

)
|u|2/(1−β)

)
− 1

]
dx ≤ 2π

∫ +∞

R0

r
(
exp

(
C1r−η

)
− 1

)
dr = C2. (3.2)

Let h0 = max0≤r≤R0 h(r). Using Theorem 1.2, we can get C3 > 0 such that∫
BR0

[
exp

((
4α0+2h(|x|)

)
|u|2/(1−β)

)
− 1

]
dr ≤

∫
BR0

[
exp

((
4α0 + 2h0

)
|u|2/(1−β)

)
− 1

]
dx

≤

∫
BR0

[
exp

((
4α0 + 2h0

)
∥u∥2/(1−β)( |u|

∥u∥
)2/(1−β)

)
− 1

]
dx ≤ C3, (3.3)

provided that ∥u∥ ≤ ρ1 for some ρ1 > 0 such that (4α0 + 2h0
)
ρ

2/(1−β)
1 < α∗β. From (3.1)–(3.3), and

Lemma 2.2, there exists C > 0 such that∫
R2

F(x, u) dx ≤ ϵC∥u∥2 +C∥u∥q,

provided that ∥u∥ ≤ ρ0 for some 0 < ρ0 ≤ min{1, ρ1}. Then,

J(u) ≥
1
2
∥u∥2 −

∫
R2

F(x, u) dx ≥
(1
2
− ϵC

)
∥u∥2 −C∥u∥q.

Note that we can assume that ϵ > 0 satisfies (1/2 − ϵC) ≥ 1/4. Consequently, it is possible to choose
ρ > 0 and σ > 0 with 0 < ρ ≤ ρ0 such that J(u) ≥ σ > 0, for all u ∈ E with ∥u∥ = ρ.
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The next lemma follows the same lines as [30, Lemma 3.3].

Lemma 3.2. Suppose that (H1) − (H2) hold. If e0 , 0 in E, then there exists t > 0 large enough such
that e = te0 satisfies

J(e) < 0 and ∥e∥ > ρ,

where ρ > 0 is given by Lemma 3.1.

4. Palais-Smale sequence

In this section, we show some results related to the Palais-Smale sequences. Let us recall that we
say that (un) ⊂ E is a (PS )c sequence for the functional J if

J(un)→ c and ∥J′(un)∥E∗ → 0. (4.1)

Moreover, if (un) satisfying (4.1) possesses a convergent subsequence, we say that (un) satisfies the
Palais-Smale condition at the level c.

The following lemma asserts that each Palais-Smale sequence associated with J is bounded.

Lemma 4.1. Assume (H1) − (H4). Then any Palais-Smale sequence for the functional J is bounded in
E.

Proof. Using (H3), we obtain

J(un) −
1
µ

J′(un)un =
(1
2
−

1
µ

)
∥un∥

2 −
1
µ

∫
R2

(
µF(x, un) − f (x, un)un

)
dx ≥

(1
2
−

1
µ

)
∥un∥

2.

Using (4.1), we have
J(un) = c + on(1) and ∥J′(un)∥E∗ = on(1).

Therefore, for n sufficiently large, we obtain(1
2
−

1
µ

)
∥un∥

2 ≤ c + on(1) + on(1)∥un∥.

Consequently, the sequence (un) is bounded in E.

Lemma 4.2. Assume that (H1)− (H4) are satisfied . Then, J satisfies the Palais-Smale condition at the
level c, where

c <
(
1
2
−

1
µ

) (
α∗β

α0

)1−β

.

Proof. Take a Palais-Smale sequence (un) ⊂ E for J at the level c of J. Using Lemma 4.1, we can find
u ∈ E, up to a subsequence, such that un ⇀ u weakly in E. Setting vn := un − u, we have that vn ⇀ 0
weakly in E. Then, ∫

R2
w(x)∇un∇vn dx −

∫
R2

f (x, un)vn dx = J′(un)vn = on(1)

and ∫
R2

w(x)∇un∇vn dx = ∥un∥
2 − ∥u∥2 + on(1).
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Therefore,

∥un∥
2 − ∥u∥2 =

∫
R2

f (x, un)vn dx + on(1). (4.2)

It remains to show that, up to a subsequence, the integral in (4.2) tends to zero as n → +∞. From
Lemma 4.1 and the assumption on c, we obtain(

1
2
−

1
µ

)
∥un∥

2 = c + on(1) <
(
1
2
−

1
µ

) (
α∗β

α0

)1−β

+ on(1).

Thus, without loss of generality, we can find δ > 0 such that

∥un∥
2/(1−β) ≤

α∗β

α0
− δ, for all n ∈ N. (4.3)

Now, take m > 1 and ϵ > 0 such that

m(α0 + 2ϵ)
(α∗β
α0
− δ

)
< α∗β. (4.4)

From assumptions on f , there exists Cϵ > 0 such that

| f (x, s)| ≤ ϵ |s| +Cϵ

[
exp

((
α0 + ϵ + h(|x|)

)
|s|2/(1−β)

)
− 1

]
, for all (x, s) ∈ R2 × R.

By the Hölder inequality with 1/m + 1/m′ = 1 and the identity (er − 1)m ≤ erm − 1 for all r ≥ 0, we
obtain∫

R2
| f (x, un)vn| dx ≤ ϵ∥un∥2∥vn∥2 +Cϵ∥vn∥m′

(∫
R2

[
exp

(
m(α0 + ϵ + h(|x|)

)
|un|

2/(1−β)
)
− 1

]
dx

)1/m

. (4.5)

Using the continuity of h and h(0) = 0, there exists 0 < r1 < 1 such that

h(|x|) < ϵ, for all |x| ≤ r1.

Thus,∫
Br1

[
exp

(
m
(
α0 + ϵ + h(|x|)

)
|un|

2/(1−β)
)
− 1

]
dx ≤

∫
Br1

[
exp

(
m(α0 + 2ϵ)∥un∥

2/(1−β)( |un|

∥un∥

)2/(1−β)
)
− 1

]
dx.

Using (4.3), (4.4), and Theorem 1.2, we can get C1 > 0 such that∫
Br1

[
exp

(
m
(
α0 + ϵ + h(|x|)

)
|un|

2/(1−β)
)
− 1

]
dx ≤

∫
Br1

[
exp

(
α∗β

( |un|

∥un∥

)2/(1−β)
)
− 1

]
dx ≤ C1. (4.6)

By (h3), there exist c > 0 and r2 > 1 such that

h(r) ≤ c|x|ξ, for all |x| ≥ r2.

Using the above inequality, the boundedness of the sequence (∥un∥), and Lemma 2.1, there exists C2 > 0
such that

m(α0 + ϵ + h(|x|))|un(x)|2/(1−β) ≤
C2

|x|η
, for all n ≥ 1 and |x| ≥ r2,
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where η = min{a/(1 − β) − ξ, a/(1 − β)} > 2, which implies the existence of C3 > 0 such that∫
R2\Br2

[
exp

(
m
(
α0 + ϵ + h(|x|)

)
|un|

2/(1−β)
)
− 1

]
dx ≤ 2π

∫ +∞

r2

[
exp

(
C2|x|−η

)
− 1

]
dr = C3. (4.7)

Since the sequence (un) is bounded in E, by Lemma 2.1, one has

|un(x)| ≤ M0, for all r1 ≤ |x| ≤ r2 and for all n ≥ 1.

Additionally, since h is continuous, there exists C3 > 0 such that∫
Br2\Br1

[
exp

(
m(α0 + ϵ + h(|x|)

)
|un|

2/(1−β)
)
− 1

]
dx ≤ C3. (4.8)

Using (4.6)–(4.8), the integral on the right-hand side of (4.5) is bounded. Moreover, by the compact
embeddings E ↪→ L2(R2) and E ↪→ Lm′(R2), and the weakly convergence vn ⇀ 0 in E, up to a
subsequence, we obtain∫

R2
| f (x, un)vn| dx ≤ ϵ∥u∥2∥vn∥2 +C∥vn∥m′ → 0, as n→ +∞,

and the lemma follows.

5. Proof of Theorem 1.3

First, we will show that S p is attained in a function in E. Consider a sequence (uk) ⊂ E such that∫
R2
|uk|

p dx = 1 and
(∫
R2

w(x)|∇uk|
2 dx

)1/2

→ S p.

Therefore, (uk) is bounded in E. Thus, we can assume that there exists some up ∈ E such that uk ⇀ up

weakly in E, uk → up strongly in Lp(R2), and uk(x) → up(x) almost everywhere in R2. Hence,
∥up∥p = 1 and ∥up∥ ≤ lim infk→+∞ ∥uk∥ = S p. Noticing that S p ≤ ∥up∥, and taking the absolute value
of the functions, we can guarantee that up ≥ 0. Thus there exists up ∈ E such that u(x) ≥ 0 in R2 with
∥up∥p = 1 satisfying

S p = inf
0,u∈H1

rad(R2,w)

( ∫
R2

w(x)|∇u|2 dx
)1/2

( ∫
R2
|u|p dx

)1/p
= ∥up∥.

This will be the element e0 considered in Lemma 3.2. From Lemmas 3.1 and 3.2, based on the well-
known pass mountain theorem by Ambrosetti-Rabinowitz [43,44]), we obtain a Palais-Smale (un) ⊂ E
at the level d ≥ σ, where σ is given by Lemma 3.1, and d > 0 is given by

d = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)),

and
Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e}.
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From (H5), we get

J(tup) =
t2

2
∥up∥

2 −

∫
R2

F(x, tup) dx ≤
t2

2
∥up∥

2 −
Cptp

p

∫
R2
|up|

p dx.

By the assumption on Cp, we obtain

sup
t≥0

J(tup) ≤ max
t≥0

{ t2S 2
p

2
−

Cptp

p

}
=

(p − 2)S 2p/(p−2)
p

2pC2/(p−2)
p

<
(1
2
−

1
µ

)(α∗β
α0

)1−β
. (5.1)

Note that e = t0up with t0 > 0 is given by Lemma 3.2. Consider γ0 ∈ Γ defined by γ0(t) = tt0up. By
(5.1), we get

d = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)) ≤ max
t∈[0,1]

J(γ0(t)) ≤ max
t∈[0,1]

J(tt0up)≤ max
t≥0

J(tup)<
(1
2
−

1
µ

)(α∗β
α0

)1−β
.

Using Lemma 4.2, the sequence (un), up to a sequence, is convergent, that is, we can get u ∈ E such
that un → u in E. By the continuity of J and J′, we have that J(u) = d and J′(u) = 0. Therefore, u
is a solution of the problem (1.12). Moreover, using the fact that J(u) = d ≥ σ, we conclude that u is
nontrivial.

6. Conclusions

In this paper, we presented a new type of Trudinger-Moser inequality defined on a radial weighted
Sobolev space. Additionally, as an application of the above result, by applying the mountain pass
theorem, we found nontrivial weak solutions for a nonlinear equation. Our main contribution is to
extend previous results by establishing equations defined on R2, involving a nonlinear equation with
supercritical exponential growth.
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1. H. Brézis, Elliptic equations with limiting Sobolev exponents, Comm. Pure Appl. Math., 39
(1986), 517–539.
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tiques, Springer-Verlag, Paris, 1993.

Electronic Research Archive Volume 32, Issue 9, 5341–5356.



5356

34. F. S. B. Albuquerque, C. O. Alves, E. S. Medeiros, Nonlinear Schrödinger equation with un-
bounded or decaying radial potentials involving exponential critical growth in R2, J. Math. Anal.
Appl., 409 (2014), 1021–1031. https://doi.org/10.1016/j.jmaa.2013.07.005.

35. B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in R2, J. Funct. Anal.,
219 (2005), 340–367. https://doi.org/10.1016/j.jfa.2004.06.013

36. B. Ruf, F. Sani, Ground states for elliptic equations with exponential critical growth, in Geomet-
ric Properties for Parabolic and Elliptic PDE’s (eds. R. Magnanini, S. Sakaguchi, A. Alvino),
Springer INdAM Series, Springer, Milano, (2013), 321–349.

37. D. Cassani, C. Tarsi, Existence of solitary waves for supercritical Schrödinger sys-
tems in dimension two, Calc. Var. Partial Differ. Equations, 54 (2015), 1673–1704.
https://doi.org/10.1007/s00526-015-0840-3

38. Y. R. S. Leuyacc, S. H. M. Soares, On a Hamiltonian system with critical exponential growth,
Milan J. Math., 87 (2019), 105–140. https://doi.org/10.1007/s00032-019-00294-3

39. S. H. M. Soares, Y. R. S. Leuyacc, Singular Hamiltonian elliptic systems with critical exponential
growth in dimension two, Math. Nachr., 292 (2019), 137–158. https://doi.org/10.1007/s00032-
019-00294-3

40. H. Zhao, Y. Guo, Y. Shen, Singular type trudinger-moser inequalities with logarithmic weights
and the existence of extremals, Mediterr. J. Math., 21 (2024), 50. https://doi.org/0.1007/s00009-
023-02582-0

41. Y. R. S. Leuyacc, A class of Schrödinger elliptic equations involving supercritical exponential
growth, Boundary Value Probl., 39 (2023), 17. https://doi.org/10.1186/s13661-023-01725-2.

42. W. A. Strauss, Existence of solitary waves in higher dimension, Commun. Math. Phys., 55 (1977),
149–162. https://doi.org/10.1007/BF01626517

43. P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential
Equations, American Mathematical Society, Providence, RI, 1986.

44. M. Willem, Minimax Theorems, Boston: Birkhäuser, 1996.
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