This paper deals with global well-posedness of the solution to the complex short pulse equation. We first use regularized technology and the approximation argument to prove the local existence and uniqueness of this equation. Then, based on conserved quantities and energy analysis, we show that the solution can be extended globally in time for suitably small initial data.
Citation: Liju Yu, Jingjun Zhang. Global solution to the complex short pulse equation[J]. Electronic Research Archive, 2024, 32(8): 4809-4827. doi: 10.3934/era.2024220
This paper deals with global well-posedness of the solution to the complex short pulse equation. We first use regularized technology and the approximation argument to prove the local existence and uniqueness of this equation. Then, based on conserved quantities and energy analysis, we show that the solution can be extended globally in time for suitably small initial data.
[1] | T. Schäfer, C. Wayne, Propagation of ultra-short optical pulses in cubic nonlinear media, Phys. D, 196 (2004), 90–105. https://doi.org/10.1016/j.physd.2004.04.007 doi: 10.1016/j.physd.2004.04.007 |
[2] | E. J. Parkes, Some periodic and solitary travelling-wave solutions of the short-pulse equation, Chaos Solitons Fractals, 38 (2008), 154–159. https://doi.org/10.1016/j.chaos.2006.10.055 doi: 10.1016/j.chaos.2006.10.055 |
[3] | A. Sakovich, S. Sakovich, Solitary wave solutions of the short pulse equation, J. Phys. A: Math. Gen., 39 (2006), L361–L367. https://doi.org/10.1088/0305-4470/39/22/L03 doi: 10.1088/0305-4470/39/22/L03 |
[4] | V. K. Kuetche, T. B. Bouetou, T. C. Kofane, On Two-loop soliton solution of the Schäfer-Wayne short-pulse equation using Hirotas method and Hodnett-Moloney approach, J. Phys. Soc. Japan, 76 (2007), 024004. https://doi.org/10.1143/JPSJ.76.024004 doi: 10.1143/JPSJ.76.024004 |
[5] | Y. Matsuno, Multiloop soliton and multibreather solutions of the short pulse model equation, J. Phys. Soc. Japan, 76 (2007), 084003. https://doi.org/10.1143/JPSJ.76.084003 doi: 10.1143/JPSJ.76.084003 |
[6] | Y. Matsuno, Periodic solutions of the short pulse model equation, J. Math. Phys., 49 (2008), 073508. https://doi.org/10.1063/1.2951891 doi: 10.1063/1.2951891 |
[7] | D. Pelinovsky, A. Sakovich, Global well-posedness of the short-pulse and sine-Gordon equations in energy space, Commun. Partial Differ. Equations, 35 (2010), 613–629. https://doi.org/10.1080/03605300903509104 doi: 10.1080/03605300903509104 |
[8] | N. Hayashi, P. I. Naumkin, Large time asymptotics for the reduced Ostrovsky equation, Commun. Math. Phys., 335 (2015), 713–738. https://doi.org/10.1007/s00220-014-2222-7 doi: 10.1007/s00220-014-2222-7 |
[9] | T. Niizato, Asymptotic behavior of solutions to the short pulse equation with critical nonlinearity, Nonlinear Anal., 111 (2014), 15–32. https://doi.org/10.1016/j.na.2014.08.008 doi: 10.1016/j.na.2014.08.008 |
[10] | M. Okamoto, Large time asymptotics of solutions to the short-pulse equation, Nonlinear Differ. Equations Appl., 42 (2017), 1–24. https://doi.org/10.1007/s00030-017-0464-8 doi: 10.1007/s00030-017-0464-8 |
[11] | J. P. Boyd, Ostrovsky and Hunter's generic wave equation for weakly dispersive waves: Matched asymptotic and pseudospectral study of the paraboloidal waves (corner and near-corner waves), Eur. J. Appl. Math., 16 (2005), 65–81. https://doi.org/10.1017/S0956792504005625 doi: 10.1017/S0956792504005625 |
[12] | J. Hunter, Numerical solutions of some nonlinear dispersive wave equations, Lect. Appl. Math., 26 (1990), 301–316. |
[13] | A. Stefanov, Y. Shen, P. G. Kevrekidis, Well-posedness and small data scattering for the generalized Ostrovsky equation, J. Differ. Equations, 249 (2010), 2600–2617. https://doi.org/10.1016/j.jde.2010.05.015 doi: 10.1016/j.jde.2010.05.015 |
[14] | N. Hayashi, P. I. Naumkin, T. Niizato, Asymptotics of solutions to the generalized Ostrovsky equation, J. Differ. Equations, 255 (2013), 2505–2520. https://doi.org/10.1016/j.jde.2013.07.001 doi: 10.1016/j.jde.2013.07.001 |
[15] | L. Kurt, Y. Chung, T. Schäfer, Higher-order corrections to the short pulse equation, J. Phys. A: Math. Theor., 46 (2013), 285205. https://doi.org/10.1088/1751-8113/46/28/285205 doi: 10.1088/1751-8113/46/28/285205 |
[16] | M. Pietrzyk, I. Kanatt$\check{s}$ikov, U. Bandelow, On the propagation of vector ultra-short pulses, J. Nonlinear Math. Phys., 15 (2008), 162–170. https://doi.org/10.2991/jnmp.2008.15.2.4 doi: 10.2991/jnmp.2008.15.2.4 |
[17] | S. Sakovich, Integrability of the vector short pulse equation, J. Phys. Soc. Japan, 77 (2008), 123001. https://doi.org/10.1143/JPSJ.77.123001 doi: 10.1143/JPSJ.77.123001 |
[18] | Y. Matsuno, A novel multi-component generalization of the short pulse equation and its multisoliton solutions, J. Math. Phys., 52 (2011), 123702. https://doi.org/10.1063/1.3664904 doi: 10.1063/1.3664904 |
[19] | Z. Zhaqilao, Q. Hu, Z. Qiao, Multi-soliton solutions and the Cauchy problem for a two-component short pulse system, Nonlinearity, 30 (2017), 3773–3798. https://doi.org/10.1088/1361-6544/aa7e9c doi: 10.1088/1361-6544/aa7e9c |
[20] | Z. Qiao, Finite-Dimensional Integrable System and Nonlinear Evolution Equations, Chinese National Higher Education Press, Beijing, 2002. |
[21] | Z. Qiao, C. Cao, W. Strampp, Category of nonlinear evolution equations, algebraic structure, and r-matrix, J. Math. Phys., 44 (2003), 701–722. https://doi.org/10.1063/1.1532769 doi: 10.1063/1.1532769 |
[22] | B. Feng, Complex short pulse and coupled complex short pulse equations, Phys. D, 297 (2015), 62–75. https://doi.org/10.1016/j.physd.2014.12.002 doi: 10.1016/j.physd.2014.12.002 |
[23] | G. Wang, A. H. Kara, A (2+1)-dimensional KdV equation and mKdV equation: Symmetries, group invariant solutions and conservation laws, Phys. Lett. A, 383 (2019), 728–731. https://doi.org/10.1016/j.physleta.2018.11.040 doi: 10.1016/j.physleta.2018.11.040 |
[24] | G. Wang, K, Yang, H. Gu, F. Guan, A. H. Kara, A (2+1)-dimensional sine-Gordon and sinh-Gordon equations with symmetries and kink wave solutions, Nuclear Phys. B, 953 (2020), 114956. https://doi.org/10.1016/j.nuclphysb.2020.114956 doi: 10.1016/j.nuclphysb.2020.114956 |
[25] | G. Wang, A new (3+1)-dimensional Schrödinger equation: Derivation, soliton solutions and conservation laws, Nonlinear Dyn., 104 (2021), 1595–1602. https://doi.org/10.1007/s11071-021-06359-6 doi: 10.1007/s11071-021-06359-6 |
[26] | Y. Liu, D. Pelinovsky, A. Sakovich, Wave breaking in the short-pulse equation, Dyn. Partial Differ. Equations, 6 (2009), 291–310. https://doi.org/10.4310/DPDE.2009.v6.n4.a1 doi: 10.4310/DPDE.2009.v6.n4.a1 |
[27] | Y. Liu, D. Pelinovsky, A. Sakovich, Wave breaking in the Ostrovsky-Hunter equation, SIAM J. Math. Anal., 42 (2010), 1967–1985. https://doi.org/10.1137/09075799X doi: 10.1137/09075799X |
[28] | C. Morosi, L. Pizzocchero, On the constants for multiplication in Sobolev spaces, Adv. Appl. Math., 36 (2006), 319–363. https://doi.org/10.1016/j.aam.2005.09.002 doi: 10.1016/j.aam.2005.09.002 |
[29] | A. J. Majda, A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, 2002. |
[30] | L. Nirenberg, On elliptic partial differential equations, in Il principio di minimo e sue applicazioni alle equazioni funzionali. C.I.M.E. Summer Schools, Springer, 2011. https://doi.org/10.1007/978-3-642-10926-3_1 |
[31] | B. Guo, Z. Gan, L. Kong, J. Zhang, The Zakharov System and its Soliton Solutions, Science Press Beijing & Springer, 2016. https://doi.org/10.1007/978-981-10-2582-2 |