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Abstract: This paper deals with global well-posedness of the solution to the complex short pulse
equation. We first use regularized technology and the approximation argument to prove the local
existence and uniqueness of this equation. Then, based on conserved quantities and energy analysis,
we show that the solution can be extended globally in time for suitably small initial data.
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1. Introduction

The short pulse equation

uxt = u +
1
6

(u3)xx (1.1)

was derived by Schäfer and Wayne [1] as a nonlinear model to describe the propagation of ultra-short
optical pulses in isotropic optical fibers. Here, u = u(t, x) is a real-valued function, representing the
magnitude of the electric field, and the subscripts denote partial derivatives with respect to t and x. It
is an integrable differential equation and has attracted much attention in the past two decades. Various
solutions to this equation have been obtained, including, its periodic and solitary wave solutions
in [2]; loop and pulse solutions in [3]; two-loop soliton solutions in [4]; and multiloop solutions,
multibreather, and periodic solutions in [5, 6]. Concerning the Cauchy problem of (1.1), local
well-posedness of solution was obtained in [1, 7], where in [7] the global existence of the solution for
small initial data in H2 was also established, and modified scattering behavior was proved in [8–10]
under different conditions on initial data.

A general model (the generalized Ostrovsky equation) related to the short pulse equation is

uxt = u + (up)xx (1.2)

where p ≥ 2 is an integer. The case of p = 2 is usually referred as the Ostrovsky-Hunter equation [11]
and short-wave equation [12]. For p ≥ 4, the global well-posedness and scattering was proved by
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Stefanov et al. [13] and Hayashi et al. [14]. Apart from the above generalization of the short pulse
equation (1.1), there are several other different versions, such as, the higher-order nonlinearity
corrections in [15], the vector short pulse equations in [16, 17], and the multi-component short pulse
model [18, 19].

In this paper we study the complex short pulse equation

qxt + q +
1
2

(|q|2qx)x = 0 (1.3)

where q(t, x) : R+ × R → C, is a complex-valued function. Equation (1.3) was produced from the
negative order Wadati-Konno-Ichikawa (WKI) hierarchy in [20, 21], where the Lax pair for the whole
WKI hierarchy and algebraic structure with r-matrix were discussed. See [18, 22] for the derivation of
this equation and [23–25] for the symmetry methods to solve the equations. Zhaqilao et al. [19] studied
multi-soliton solutions and the Cauchy problem for (1.3). As far as we know, the global existence
theory for this equation has not been established, and the goal of this paper is to obtain the global
well-posedness result.

To apply the partial differential equation theories for (1.3), we rewrite it into a first order equation
with respect to t. Hence, we integrate Eq (1.3) to get

qt + ∂
−1
x q +

1
2
|q|2qx = 0, (1.4)

where ∂−1
x q is defined through the Fourier transform, namely,

F (∂−1
x f )(ξ) =

1
iξ

f̂ (ξ).

From now on, we mainly focus on Eq (1.4).
Throughout the paper, Lp (p ≥ 1) is the usual Lebesgue space, Hk denotes the inhomogeneous

Sobolev spaces equipped with the norm

∥ f ∥Hk := ∥(1 + ξ2)k/2 f̂ (ξ)∥L2 ,

and Ḣ−1 is the homogeneous Sobolev space with

∥ f ∥Ḣ−1 := ∥|ξ|−1 f̂ (ξ)∥L2 .

The main results of the paper are the following two theorems.

Theorem 1.1. Assume that the initial data q0 ∈ H2 ∩ Ḣ−1. Then, there exists a time T > 0, depending
only on the norms of initial data, such that the complex short pulse equation (1.4) has a unique solution
q ∈ C([0,T ]; H2 ∩ Ḣ−1) satisfying q(0) = q0. Moreover, if T ∗ is the time that the solution can not be
continued to T = T ∗, then either T ∗ = ∞ or ∥q(t, x)∥H2 tends to infinite as t → T ∗.

We remark that the sine-Gordon transformation method studying the Eq (1.1) in [7] doesn’t work
for the complex Eq (1.3). Here, we use regularized technology to compensate the loss of derivative
for the nonlinear term and take approximation argument to obtain the local existence result for the
complex short pulse equation.
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To state the global result, we set

H1(0) =
∫
R

|q0|
2dx,

H2(0) =
∫
R

( √
1 + |q0x|

2 − 1
)
dx,

H3(0) =
∫
R

[ |q0xx|
2

(1 + |q0x|
2)

5
2

−
1
4

(q0xq0xx − q0xq0xx)2

(1 + |q0x|
2)

5
2

]
dx,

and we will show that they are all conserved as long as the solution exists (see Lemma 4.1 in Section
4). We note that the second term in the quantity H3(0) is new and nonzero in our complex case. The
conserved quantity H3 is derived by delicate analysis and computations. We now state the global
existence of solution to (1.3). Due to the work of Liu et al. [26, 27] where wave-break phenomena is
demonstrated, the global result obtained here requires the smallness assumption on the initial data.

Theorem 1.2. Let q0 ∈ H2 ∩ Ḣ−1 with H1(0),H2(0),H3(0) small. Then, the complex short pulse
equation (1.3) admits a unique global solution q ∈ C([0,+∞); H2 ∩ Ḣ−1) satisfying q(0) = q0.

To prove Theorem 1.2, the crucial step is to obtain the H2 bound for the solution q from the above
three conserved quantities. This aim is achieved by combining change of variable, interpolation
inequalities, and the continuous lemma.

This paper is organized as follows. In Section 2, we use the regularized operator to construct a
regularized equation for (1.4) and prove the global well-posedness of smooth solution to this equation.
Giving an a priori estimate for the regularized equation and taking the limit argument, Theorem 1.1 is
proved in Section 3. Finally, in Section 4, we present the proof of Theorem 1.2.

2. A regularization of the complex short pulse equation

In this section, we will prove the existence of solution for a regularized problem of the complex
short pulse equation. To this end, we introduce the regularized operator Jϵ = (I − ϵ∂xx)−1 and consider
the following regularized equation

qϵt + ∂
−1
x qϵ +

1
2

Jϵ
[
|Jϵqϵ |2(Jϵqϵx)

]
= 0. (2.1)

Formally, when ϵ → 0, Eq (2.1) converges to (1.4). Rigorous justification of this convergence behavior
actually gives the proof of Theorem 1.1. Here, we show the global well-poseness for the regularized
equation (2.1).

Using the approach of Fourier transform, we can derive the following properties for the operator Jϵ .

Lemma 2.1. The following two statements hold for Jϵ .
(i) Suppose f (x) ∈ Hk(R) with k ≥ 0. Then,

∥Jϵ f (x)∥Hk ≤ ∥ f (x)∥Hk , (2.2)
∥Jϵ f (x)∥Hk+2 ≤ C(ϵ)∥ f (x)∥Hk , (2.3)

∥Jϵ f (x)∥L∞ + ∥Jϵ f ′(x)∥L∞ ≤ C(ϵ)∥ f (x)∥L2 (2.4)
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where C(ϵ) denotes a constant depending on ϵ.
(ii) If u(x) ∈ L2(R), v(x) ∈ L2(R), then∫

R

(Jϵu) · vdx =
∫
R

u · (Jϵv)dx. (2.5)

Proof. Using the definition of the Hk+2-norm and the property of the Fourier transform, for any given
ϵ > 0, one gets

∥Jϵ f ∥Hk+2 = ∥(1 + ξ2)
k+2

2 Ĵϵ f (ξ)∥L2

=
( ∫
R

(1 + ξ2)k+2 1
(1 + ϵξ2)2 | f̂ (ξ)|2dξ

) 1
2

≤ C(ϵ)
( ∫
R

(1 + ξ2)k| f̂ (ξ)|2dξ
) 1

2

= C(ϵ)∥ f ∥Hk .

Hence, the estimate (2.3) holds. The proof of (2.2) is similar. For (2.4), we have

∥Jϵ f (x)∥L∞ + ∥Jϵ f ′(x)∥L∞ ≤ C∥Jϵ f (x)∥H2 ≤ C(ϵ)∥ f (x)∥L2 .

The equality (2.5) follows by using the fundamental property of the Fourier transform. □

Taking the basic L2 energy estimate, we can obtain following conservation law.

Lemma 2.2. Suppose that qϵ ∈ C([0,T ]; H2 ∩ Ḣ−1) is a solution of (2.1). Then, we have∫
R

|qϵ(t, x)|2dx = const, t ∈ [0,T ].

Proof. Note that the above assumption implies ∂−1
x qϵ ∈ C([0,T ]; H1), so ∂−1

x qϵ decays to zero as |x| →
∞. Multiplying (2.1) by 2qϵ and integrating the real part over R, we obtain

d
dt
∥qϵ∥2L2 = −Re

∫
R

Jϵ
[
|Jϵqϵ |2(Jϵqϵx)

]
· qϵdx.

By Lemma 2.1 (ii), we have

Re
∫
R

Jϵ
[
|Jϵqϵ |2(Jϵqϵx)

]
· qϵdx = Re

∫
R

|Jϵqϵ |2(Jϵqϵx) · (Jϵqϵ)dx

=
1
4

∫
R

∂x(|Jϵqϵ |4)dx

= 0.

So the L2 conserved quantity is proved. □

From Lemma 2.2 and (2.4), we see that in the linear level the role of Jϵ gives L∞ estimate of Jϵqϵ

which is crucial in the global extension argument of Theorem 2.1. Moreover, as we will see later, in
the nonlinear level, the appearance of Jϵ absorbs the derivative in the nonlinear term which makes the
estimate for such terms easier.

Now, we give the global existence result for the regularized problem (2.1).
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Theorem 2.1. For any given ϵ > 0 and qϵ0 ∈ Hk ∩ Ḣ−1 with k ≥ 2 as an integer, the Eq (2.1) admits a
unique solution

qϵ ∈ C([0,+∞); Hk ∩ Ḣ−1)

satisfying qϵ(0) = qϵ0.

Proof. Our proof is based on the contraction mapping principle and continuation principle of an
autonomous ODE on a Banach space. We split the proof into two steps.

1) First, we prove the local well-posedness of the Eq (2.1). The fundamental solution of the linear
problem for (2.1) {

Qϵt + ∂
−1
x Qϵ = 0,

Qϵ(0) = Qϵ0
is

Qϵ(t) = e−t∂−1
x Qϵ0.

Note that the solution operator e−t∂−1
x is a norm-preserving map from Hk to Hk in the sense of

∥Qϵ(t)∥Hk = ∥e−t∂−1
x Qϵ0∥Hk = ∥Qϵ0∥Hk . (2.6)

By Duhamel’s principle, we obtain the integral equation for the nonlinear problem (2.1) satisfying
qϵ(0) = qϵ0:

qϵ = Qϵ −
1
2

∫ t

0
e−(t−s)∂−1

x Jϵ
[
|Jϵqϵ |2(Jϵqϵx)

]
(s)ds,

from which we notice that Qϵ0 = qϵ0.
Define the operator Φ by

Φ(qϵ) = Qϵ −
1
2

∫ t

0
e−(t−s)∂−1

x Jϵ
[
|Jϵqϵ |2(Jϵqϵx)

]
(s)ds.

To prove the local well-posedness result, we need to showΦmaps Hk into Hk andΦ is locally Lipschitz
continuous in Hk.

By the triangle inequality, the norm preserving property (2.6) and Lemma 2.1 (i), we deduce

∥Φ(qϵ)∥Hk ≤ ∥Qϵ∥Hk +
1
2

∫ t

0

∥∥∥∥e−(t−s)∂−1
x Jϵ
[
|Jϵqϵ |2(Jϵqϵx)

]∥∥∥∥
Hk

ds

= ∥qϵ0∥Hk +
1
2

∫ t

0

∥∥∥∥Jϵ[|Jϵqϵ |2(Jϵqϵx)
]∥∥∥∥

Hk
ds

≤ ∥qϵ0∥Hk +C(ϵ)
∫ t

0
∥qϵ∥3Hkds,

where, for the last inequality, we have used the Banach algebra property (see, e.g., [28])

∥ f g∥Hs ≤ Cs∥ f ∥Hs∥g∥Hs , s >
1
2
. (2.7)

Therefore, this shows that the map Φ is a closed map of Hk to itself. Moreover, a similar analysis can
be used to prove that Φ is Lipschitz with respect to qϵ and it is contractive if Tϵ = T (ϵ, qϵ0) > 0 is
sufficiently small.
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Hence, by the contraction mapping principle, we know that there exists a unique solution qϵ(t, x) ∈
C([0,Tϵ); Hk) for some Tϵ > 0. As qϵ0 ∈ Ḣ−1, we can also show qϵ(t, x) ∈ C([0,Tϵ); H−1). Indeed,
differentiating equation (2.1) gives

qϵtt + ∂
−1
x qϵt +

1
2

Jϵ
[
|Jϵqϵ |2t Jϵqϵx

]
+

1
2

Jϵ
[
|Jϵqϵ |2Jϵqϵxt

]
= 0,

which is equivalent to

qϵtt + ∂
−1
x qϵt = −

1
2

Jϵ
[
(Jϵqϵt Jϵqϵ + JϵqϵJϵqϵt )Jϵqϵx

]
−

1
2

Jϵ
[
|Jϵqϵ |2(Jϵqϵ +

1
2

J2
ϵ (|Jϵq

ϵ |2Jϵqϵx)x
]
.

Thus, we have

qϵt =e−t∂−1
x qϵt (0) −

1
2

∫ t

0
e−(t−s)∂−1

x Jϵ
[
(Jϵqϵt Jϵqϵ + JϵqϵJϵqϵt )Jϵqϵx

]
ds

−
1
2

∫ t

0
e−(t−s)∂−1

x Jϵ
[
|Jϵqϵ |2(Jϵqϵ +

1
2

J2
ϵ (|Jϵq

ϵ |2Jϵqϵx)x
]
ds

which implies

sup
t∈[0,τ]
∥qϵt (t, x)∥Hk−2 ≤C∥qϵ0∥Ḣ−1∩Hk +Cτ sup

t∈[0,Tϵ ]
∥qϵ(t, x)∥2Hk sup

t∈[0,τ]
∥qϵt (t, x)∥Hk−2

+Cτ sup
t∈[0,Tϵ ]

∥qϵ(t, x)∥3Hk .

This shows that qϵt (t, x) ∈ Hk−2 for

τ ≤ τ0 := [2C sup
t∈[0,Tϵ ]

∥qϵ(t, x)∥2Hk]−1.

Moreover, with similar arguments, we can easily obtain

∥qϵt (t2, x) − qϵt (t1, x)∥Hk−2 ≤ C|t2 − t1| sup
t∈[0,Tϵ ]

∥qϵ(t, x)∥3Hk , t1, t2 ∈ [0, τ0],

so qϵt ∈ C([0, τ0]; Hk−2). Since τ0 depends only on the Hk energy norm of qϵ , a bootstrap argument
shows that the Hk−2-norm continuity of qϵt holds in the whole interval [0,Tϵ). This result together with
Eq (2.1) also imply that

qϵ ∈ C([0,Tϵ); Ḣ−1).

2) Second, we will show that Tϵ = +∞. Assume the maximal existence time Tϵ < +∞, from the
continuation principle, it suffices for us to obtain an a priori bound for ∥qϵ(·, t)∥Hk in the time interval
[0,Tϵ). From (2.1), we have

qϵxt + qϵ +
1
2

Jϵ
[
|Jϵqϵ |2(Jϵqϵx)

]
x = 0. (2.8)

Multiplying (2.8) by 2qϵx and integrating the real part over R, we obtain

d
dt
∥qϵx∥

2
L2 + Re

∫
R

Jϵ
[
|Jϵqϵ |2(Jϵqϵx)

]
x · qϵxdx = 0. (2.9)
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Applying Cauchy-Schwarz inequality and Lemma 2.1 (i), the nonlinear term is estimated by

Re
∫
R

Jϵ
[
|Jϵqϵ |2(Jϵqϵx)

]
x · qϵxdx ≤

∥∥∥∥Jϵ[|Jϵqϵ |2(Jϵqϵx)
]

x

∥∥∥∥
L2
∥qϵx∥L2

≤ C(ϵ)
∥∥∥|Jϵqϵ |2(Jϵqϵx)

∥∥∥
L2∥qϵx∥L2

≤ C(ϵ)
∥∥∥|Jϵqϵ |2∥∥∥L∞∥qϵx∥2L2

≤ C(ϵ)∥qϵx∥
2
L2 ,

where, for the last inequality we have used Lemma 2.2 and (2.4). As a result, we conclude that

d
dt
∥qϵx∥

2
L2 ≤ C(ϵ)∥qϵx∥

2
L2 ,

which, by Gronwall’s inequality, gives us

∥qϵx(t, x)∥L2 ≤ C(ϵ,Tϵ), t ∈ [0,Tϵ). (2.10)

Taking the partial derivative ∂x to Eq (2.8) and multiplying both sides by 2qϵxx, we have

d
dt
∥qϵxx∥

2
L2 = I1 + I2 + I3 (2.11)

with

I1 := − Re
∫
R

|Jϵqϵ |2xxJϵqϵx · Jϵqϵxxdx,

I2 := − 2Re
∫
R

|Jϵqϵ |2xJϵqϵxx · Jϵqϵxxdx,

I3 := − Re
∫
R

|Jϵqϵ |2Jϵqϵxxx · Jϵqϵxxdx.

We use Hölder’s inequality and (2.4) to obtain

|I1| + |I2| ≤ C∥Jϵqϵxx∥
2
L2∥Jϵqϵ∥L∞∥Jϵqϵx∥L∞ +C∥Jϵqϵxx∥L2∥Jϵqϵx∥L2∥Jϵqϵx∥

2
L∞

≤ C(ϵ)∥Jϵqϵxx∥
2
L2 +C(ϵ).

For the term I3, we first integrate it by part, then we have

|I3| ≤ C∥Jϵqϵxx∥
2
L2∥Jϵqϵ∥L∞∥Jϵqϵx∥L∞ ≤ C(ϵ)∥Jϵqϵxx∥

2
L2 .

Hence, by (2.11) and Gronwall’s inequality, we get

∥qϵxx(t, x)∥L2 ≤ C(ϵ,Tϵ), t ∈ [0,Tϵ), (2.12)

which yields the boundedness of the H2 norm for qϵ .
Applying a similar argument as above, we can actually obtain

∥qϵ(t, x)∥Hk ≤ C(ϵ,Tϵ), t ∈ [0,Tϵ),

which implies Tϵ = +∞. Hence, the proof of Theorem 2.1 is finished. □

We remark that the constant C(ϵ) that appears in the above proof tends to∞ as ϵ → 0.
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3. Local existence and uniqueness

We now present the proof of Theorem 1.1.
Proof of Theorem 1.1. To prove the local existence result of Theorem 1.1, we should drive an a priori
estimate for the solution qϵ of the regularized equation. Note that the constant C obtained in (2.10) and
(2.12) depends on ϵ, which are not sufficient for our argument. We first regularize the initial data by

qϵ0(x) := (q0 ∗ ρϵ)(x),

where ρϵ(x) = 1
ϵ
ρ( x
ϵ
) and ρ(x) is a radial function satisfying

ρ(x) ∈ C∞0 (R), ρ(x) ≥ 0,
∫
R

ρ(x)dx = 1.

Clearly, we have qϵ0(x) ∈ Hm(R) ∩ Ḣ−1(R) for all m ≥ 0, and

lim
ϵ→0
∥qϵ0 − q0∥H2∩Ḣ−1 = 0. (3.1)

See [29, Section 3.5] for the proof for (3.1). By Theorem 2.1, Eq (2.1) has a unique solution qϵ ∈
C([0,+∞); Hm ∩ Ḣ−1) equipped with the initial data qϵ0(x), where the integer m can be taken large
enough to proceed all the following differential calculations.

From Lemma 2.2, we have
∥qϵ(t, x)∥L2 = ∥qϵ0(x)∥L2 . (3.2)

Next, we will estimate L2 norm of qϵx. By Lemma 2.1 (ii), the triangle inequality, we obtain from
the equality (2.9),

d
dt
∥qϵx∥

2
L2 ≤

∫
R

∣∣∣|Jϵqϵ |2x(Jϵqϵx) · Jϵqϵx
∣∣∣dx − Re

∫
R

|Jϵqϵ |2(Jϵqϵxx) · Jϵqϵxdx

=: Ĩ1 + Ĩ2.

Using Hölder’s inequality, Lemma 2.1 (i), and noting that H1(R) ↪→ L∞(R), the first term Ĩ1 is estimated
by

Ĩ1 ≤ 2
∥∥∥Jϵqϵx · Jϵqϵ∥∥∥L2 · ∥Jϵq

ϵ
x∥L∞ · ∥Jϵqϵx∥L2

≤ 2∥Jϵqϵx∥L2 · ∥Jϵqϵ∥L∞ · ∥Jϵqϵx∥L∞ · ∥Jϵqϵx∥L2

≤ C∥qϵx∥L2 · ∥Jϵqϵ∥H1 · ∥Jϵqϵx∥H1 · ∥qϵx∥L2

≤ C∥qϵ∥4H2 .

For the term Ĩ2, estimating in the same way, there holds

Ĩ2 =
1
2

∫
R

|Jϵqϵ |2x · |Jϵq
ϵ
x|

2dx ≤ C∥qϵ∥4H2 .

So, we get from these two estimates that

d
dt
∥qϵx∥

2
L2 ≤ C∥qϵ∥4H2 . (3.3)

Electronic Research Archive Volume 32, Issue 8, 4809–4827.



4817

Integrating with respect to t on both sides of (3.3), we obtain that

∥qϵx(t)∥
2
L2 ≤ C

∫ t

0
∥qϵ∥4H2dt + ∥qϵx(0)∥2L2 . (3.4)

Now we will estimate the L2 norm of qϵxx. For differentiating equation (2.8) with respect to x, we
get

qϵxxt + qϵx +
1
2

Jϵ
[
|Jϵqϵ |2(Jϵqϵx)

]
xx = 0. (3.5)

Multiplying (3.5) by 2qϵxx and taking the real part of the result, we have

d
dt
∥qϵxx∥

2
L2 + Re

∫
R

Jϵ
[
|Jϵqϵ |2(Jϵqϵx)

]
xx · qϵxxdx = 0.

Using Lemma 2.1 (ii) and the triangle inequality, we obtain

d
dt
∥qϵxx∥

2
L2 ≤

∫
R

∣∣∣|Jϵqϵ |2xx(Jϵqϵx) · Jϵqϵxx

∣∣∣dx + 2
∫
R

∣∣∣|Jϵqϵ |2x(Jϵqϵxx) · Jϵqϵxx

∣∣∣dx

− Re
∫
R

|Jϵqϵ |2(Jϵqϵxxx) · Jϵqϵxxdx

=: Ĩ3 + Ĩ4 + Ĩ5.

By Hölder’s inequality, Lemma 2.1 (i), the embedding relation H1(R) ↪→ L∞(R), and the Banach
algebra property (2.7), the term Ĩ3 + Ĩ4 can be estimated by

Ĩ3 + Ĩ4 ≤
∥∥∥|Jϵqϵ |2xx(Jϵqϵx)

∥∥∥
L2 · ∥Jϵqϵxx∥L2 + 2

∥∥∥|Jϵqϵ |2x(Jϵqϵxx)
∥∥∥

L2 · ∥Jϵqϵxx∥L2

≤
∥∥∥|Jϵqϵ |2xx

∥∥∥
L2 · ∥Jϵq

ϵ
x∥L∞ · ∥q

ϵ
xx∥L2 + 2

∥∥∥|Jϵqϵ |2x∥∥∥L∞ · ∥Jϵqϵxx∥L2 · ∥qϵxx∥L2

≤ C∥qϵ∥4H2 .

For the term Ĩ5, we integrate it by parts to get

Ĩ5 = −
1
2

∫
R

|Jϵqϵ |2 · |Jϵqϵxx|
2
xdx

=
1
2

∫
R

|Jϵqϵ |2x · |Jϵq
ϵ
xx|

2dx

≤ C∥qϵ∥4H2 .

Therefore, we concude that
d
dt
∥qϵxx∥

2
L2 ≤ C∥qϵ∥4H2 . (3.6)

Integrating with respect to t on both sides of (3.6), we obtain

∥qϵxx(t)∥
2
L2 ≤ C

∫ t

0
∥qϵ∥4H2dt + ∥qϵxx(0)∥2L2 . (3.7)

Combining (3.2), (3.4), and (3.7), we get

∥qϵ∥2H2 ≤ C
∫ t

0
∥qϵ∥4H2dt + ∥qϵ0∥

2
H2 = C

∫ t

0
∥qϵ∥4H2dt +C1,
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where we have used (3.1) in the last step. Note that the constant C is independent of ϵ, and by (3.1),
one has

C1 = ∥qϵ0∥
2
H2 → ∥q0∥

2
H2 , ϵ → 0. (3.8)

Let

φϵ(t) = C
∫ t

0
∥qϵ∥4H2dt +C1.

Then, there holds
dφϵ(t)

dt
≤ C[φϵ(t)]2

which gives us

∥qϵ∥2H2 ≤ φ
ϵ(t) ≤

C1

1 −CC1t
. (3.9)

Hence, using (3.8), we see that there exists a time T > 0 (T = T (∥q0∥H2)) such that

∥qϵ∥H2 ≤ C, ∀ t ∈ [0,T ]. (3.10)

This shows that the regularized solution qϵ is uniformly bounded in H2, and the argument used in the
first step of Theorem 2.1 also yields the uniform bound of qϵt in L2.

Moreover, we can show that the solution family qϵ (also qϵt ) forms a Cauchy sequence in
C([0,T ]; L2). In fact, for ϵ > ϵ′ > 0, taking energy estimate of the equation

(qϵ − qϵ
′

)t + ∂
−1
x (qϵ − qϵ

′

)

+
1
2

(Jϵ − Jϵ′)[|Jϵqϵ |2Jϵqϵx] +
1
2

Jϵ′[|Jϵqϵ |2Jϵqϵx − |Jϵ′q
ϵ′ |2Jϵ′qϵ

′

x ] = 0 (3.11)

at L2 level yields that
d
dt
∥qϵ − qϵ

′

∥2L2 = K1 + K2,

where

K1 := − Re
∫
R

(Jϵ − Jϵ′)[|Jϵqϵ |2Jϵqϵx] · (qϵ − qϵ′)dx,

K2 := − Re
∫
R

Jϵ′[|Jϵqϵ |2Jϵqϵx − |Jϵ′q
ϵ′ |2Jϵ′qϵ

′

x ] · (qϵ − qϵ′)dx.

Using Plancherel’s theorem and (3.10), we have

∥(Jϵ − Jϵ′)[|Jϵqϵ |2Jϵqϵx]∥L2 = ∥
(ϵ − ϵ′)ξ2

(1 + ϵξ2)(1 + ϵ′ξ2)
F [|Jϵqϵ |2Jϵqϵx](ξ)∥L2

=
√
ϵ − ϵ′∥

√
ϵ − ϵ′ξ

(1 + ϵξ2)(1 + ϵ′ξ2)
F [(|Jϵqϵ |2Jϵqϵx)x](ξ)∥L2

≤
√
ϵ∥[|Jϵqϵ |2Jϵqϵx]x∥L2

≤ C
√
ϵ.

Therefore,
|K1| ≤ C

√
ϵ∥qϵ − qϵ

′

∥L2 .
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To estimate K2, we rewrite it as
K2 = K21 + K22 + K23

with

K21 := − Re
∫
R

[|Jϵqϵ |2(Jϵ − Jϵ′)qϵx] · Jϵ′(qϵ − qϵ′)dx,

K22 := − Re
∫
R

[|Jϵqϵ |2Jϵ′(qϵx − qϵ
′

x )] · Jϵ′(qϵ − qϵ′)dx,

K23 := − Re
∫
R

[(|Jϵqϵ |2 − |Jϵ′qϵ
′

|2)Jϵ′qϵ
′

x ] · Jϵ′(qϵ − qϵ′)dx.

Using the uniform bound (3.10) and the same treatment for Jϵ − Jϵ′ as above, we can get

|K21| ≤ C
√
ϵ∥qϵ − qϵ

′

∥L2 .

Similarly, the term K23 is estimated by

|K23| ≤ C
√
ϵ∥qϵ − qϵ

′

∥L2 +C∥qϵ − qϵ
′

∥2L2 .

Then, integrating by part gives us
|K22| ≤ C∥qϵ − qϵ

′

∥2L2 .

Combining these estimates gives us

∥qϵ − qϵ
′

∥C([0,T ];L2) → 0, ϵ, ϵ′ → 0.

By interpolation, we also have

∥qϵ − qϵ
′

∥C([0,T ];Hk′ ) → 0, ϵ, ϵ′ → 0. (3.12)

for any 0 ≤ k′ < 2. A similar strategy can be applied to show the Cauchy property of the sequence qϵt
in C([0,T ]; L2), that is

∥qϵt − qϵ
′

t ∥C([0,T ];L2) → 0, ϵ, ϵ′ → 0. (3.13)

and further details are omitted.
Now we can prove the existence part of Theorem 1.1. Indeed, from (3.12), (3.13), and the equation

(2.1), applying the standard limit argument, we see that there exists
q ∈ C([0,T ]; Hk′ ∩ Ḣ−1) ∩ CW([0,T ]; H2) satisfying Eq (1.4) with k′ < 2, here CW([0,T ]; H2) denotes
the continuity on [0,T ] with values in the weak topology of H2. Furthermore, we can show that q is
also continuous in the strong topology of H2. To see this result, we rewrite (3.9) in the form

∥qϵ(t)∥2H2 − ∥qϵ0∥
2
H2 ≤

CC1t
1 −CC1t

.

By (3.8) and the weak convergence property of qϵ(t) in H2, we obtain

∥q(t)∥2H2 − ∥qϵ0∥
2
H2 ≤

CC1t
1 −CC1t

,
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which implies that
lim sup

t→0+
∥q(t)∥H2 ≤ ∥q0∥H2 .

On the other hand, the fact q ∈ CW([0,T ]; H2) gives

∥q0∥H2 ≤ lim inf
t→0+

∥q(t)∥H2 .

Hence, the strong continuity of q at t = 0 is proved. This argument also yields the continuity of q in
H2 at any time. Then, we have q ∈ C([0,T ]; H2).

Finally, it remains to prove the uniqueness. In fact, if q and q̃ both satisfy (1.4) with the same initial
data, then q − q̃ satisfies

(q − q̃)t + ∂
−1
x (q − q̃) +

1
2

(|q|2 − |q̃|2)qx +
1
2
|q̃|2(q − q̃)x = 0. (3.14)

Multiplying (3.14) by 2q − q̃ and integrating the real part over R, we get

d
dt
∥q − q̃∥2L2 = −Re

∫
R

(|q|2 − |q̃|2)qxq − q̃dx − Re
∫
R

|q̃|2(q − q̃)xq − q̃dx.

Then, applying integration by parts, Hölder’s inequality, and the Banach algebra property (2.7), we
obtain

d
dt
∥q − q̃∥2L2 ≤

∫
R

|(q(q − q̃) + q̃(q − q̃))qx(q − q̃)|dx +
1
2

∫
R

|q̃|2x|q − q̃|2dx

≤ 2∥qx∥L∞∥q∥L∞∥q − q̃∥2L2 +
1
2
∥|q̃|2x∥L∞∥q − q̃∥2L2

≤ C∥q − q̃∥2L2 ,

where we have used the fact that q, q̃ ∈ H2 in the last inequality. Since q and q̃ satisfy the same initial
data, the uniqueness follows from Gronwall’s inequality.

□

4. Global well-posedness

In this section, we will prove the global well-posedness of the complex short pulse equation (1.3),
namely, Theorem 1.2. The proof is based only on the energy analysis. To prove this result, we need to
control the H2 norm of q(t) by a t-independent constant. This constant will be found from the values
of the conserved quantities of (1.4).

Lemma 4.1. Let q(t, x) ∈ C([0,T ); H2 ∩ Ḣ−1) be the solution of (1.4) obtained in Theorem 2.1. Then,
the following quantities are conserved on [0,T ):

H1(t) : =
∫
R

|q|2dx,

H2(t) : =
∫
R

( √
1 + |qx|

2 − 1
)
dx =

∫
R

|qx|
2

1 +
√

1 + |qx|
2
dx,

H3(t) : =
∫
R

[ |qxx|
2(

1 + |qx|
2) 5

2

−
1
4

(qxqxx − qxqxx)2(
1 + |qx|

2) 5
2

]
dx.
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Proof. For the sake of simplicity, q is assumed smooth in this proof and rigorous limit argument is
omitted. Multiplying (1.4) by 2q, and taking the real part, we derive the first balance equation

∂t(|q|2) = −∂x
(
|∂−1

x q|2 +
1
4
|q|4
)
, (4.1)

where ∂−1
x q = −qt −

1
2 |q|

2qx.
Multiplying (1.3) by 2qx√

1+|qx |2
, and taking the real part, we derive the second balance equation

∂t
( √

1 + |qx|
2 − 1
)
= −

1
2
∂x
(
|q|2
√

1 + |qx|
2). (4.2)

Integrating (4.1) and (4.2) over x in R, we obtain the conversations ofH1(t) andH2(t).
Differentiating equation (1.3) with respect to x, we get

qxxt + qx +
1
2
(
|q|2xxqx + 2|q|2xqxx + |q|2qxxx

)
= 0. (4.3)

Multiplying (4.3) by 2qxx

(1+|qx |2)
5
2
, taking the real part, and noting that

|q|2xx = qqxx + 2|qx|
2 + qqxx,

we obtain

∂t

[ |qxx|
2(

1 + |qx|
2) 5

2

]
+

5|qxx|
2Re(qx · qxt)

(1 + |qx|
2)

7
2

+
|qx|

2
x(qqxx + 2|qx|

2 + qqxx)

2
(
1 + |qx|

2) 5
2

+
|qx|

2
x(

1 + |qx|
2) 5

2

+
2|q|2x|qxx|

2(
1 + |qx|

2) 5
2

+
|q|2|qxx|

2
x

2
(
1 + |qx|

2) 5
2

= 0.

From Eq (1.3), we have

5|qxx|
2Re(qx · qxt)

(1 + |qx|
2)

7
2

= −
5|q|2x|qxx|

2

2
(
1 + |qx|

2) 5
2

−
5|q|2|qx|

2
x|qxx|

2

4
(
1 + |qx|

2) 7
2

.

Thus, we deduce

∂t

[ |qxx|
2(

1 + |qx|
2) 5

2

]
=
|q|2x|qxx|

2

2
(
1 + |qx|

2) 5
2

+
5|q|2|qx|

2
x|qxx|

2

4
(
1 + |qx|

2) 7
2

−
|qx|

2
x(

1 + |qx|
2) 3

2

−
|qx|

2
x(qqxx + qqxx)

2
(
1 + |qx|

2) 5
2

−
|q|2|qxx|

2
x

2
(
1 + |qx|

2) 5
2

. (4.4)

By a direct computation, we get

∂t

[
−

1
4

(qxqxx − qxqxx)2(
1 + |qx|

2) 5
2

]
= −

1
2

(qxqxx − qxqxx)(
1 + |qx|

2) 5
2

(qxtqxx − qxtqxx + qxqxxt − qxqxxt)
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+
5
8

(qxqxx − qxqxx)2|qx|
2
t(

1 + |qx|
2) 7

2

.

From Eqs (1.3) and (4.3), we have

qxtqxx − qxtqxx = qqxx − qqxx +
1
2
|q|2x(qxqxx − qxqxx),

qxqxxt − qxqxxt = |q|2x(qxqxx − qxqxx) +
1
2
|q|2(qxqxxx − qxqxxx),

and
|qx|

2
t = −|q|

2
x(1 + |qx|

2) −
1
2
|q|2|qx|

2
x.

Note that
(qqx − qqx)x = qqxx − qqxx , (qxqxx − qxqxx)x = qxqxxx − qxqxxx.

So, we deduce

∂t

[
−

1
4

(qxqxx − qxqxx)2(
1 + |qx|

2) 5
2

]
=

1
8
|q|2x(qxqxx − qxqxx)2(

1 + |qx|
2) 5

2

−
5

16
|q|2|qx|

2
x(qxqxx − qxqxx)2(
1 + |qx|

2) 7
2

−
1
2

(qxqxx − qxqxx)(qqx − qqx)x(
1 + |qx|

2) 5
2

+
1
4
|q|2(qxqxx − qxqxx)(qxqxx − qxqxx)x(

1 + |qx|
2) 5

2

. (4.5)

Combining (4.4) and (4.5), we conclude

∂t

[ |qxx|
2(

1 + |qx|
2) 5

2

−
1
4

(qxqxx − qxqxx)2(
1 + |qx|

2) 5
2

]
= ∂x

[ 2(
1 + |qx|

2) 1
2

−
|q|2|qxx|

2

2
(
1 + |qx|

2) 5
2

+
1
8
|q|2(qxqxx − qxqxx)2(

1 + |qx|
2) 5

2

]
, (4.6)

where, we have used the following equality

−
1
2

(qxqxx − qxqxx)(qqx − qqx)x(
1 + |qx|

2) 5
2

= −
|q|2x|qxx|

2(
1 + |qx|

2) 5
2

+
1
2
|qx|

2
x(qqxx + qqxx)(
1 + |qx|

2) 5
2

.

Integrating (4.6) over x in R, we obtain the conversation ofH3(t). □

To control the H2 norm of q(t), we also need the following two results, which can be found in [30]
and [31, Lemma 2.1.3], respectively.

Lemma 4.2. Let u belongs to Lb in Rn and its derivatives of order m, Dmu, belongs to Lr, 1 ≤ b, r ≤ ∞.
For the derivatives D ju, 0 ≤ j < m, the following inequalities hold

∥D ju∥La ≤ C∥Dmu∥pLr∥u∥
1−p
Lb ,

where
1
a
=

j
n
+ p
(1
r
−

m
n
)
+ (1 − p)

1
b
,

for all p in the interval j
m ≤ p ≤ 1 (The constant depending only on n,m, j, b, r, p).
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Lemma 4.3. Let f (x) be a nonnegative continuous function on R+ satisfying

f (x) ≤ a + b f κ(x), a, b > 0, κ > 1.

If a and b further satisfy

aκ−1b <
(κ − 1)κ−1

κκ

and f (0) ≤ a, then f (x) is bounded on R+.

Proof of Theorem 1.2. As shown in Theorem 2.1, the Ḣ−1 norm of q(t, x) is essentially controlled by
its H2 energy norm. To estimate ∥q(t)∥H2 , noting thatH1(t) = ∥q(t)∥2L2 is a constant, it suffices for us to
estimate ∥qx(t)∥H1 . To this end, we introduce a variable

Q(x) =
qx√

1 + |qx|
2
,

that is,

qx =
Q√

1 − |Q|2
.

When |Q| < 1, we can expand qx in the Taylor series

qx = Q ·
∞∑

n=0

(2n − 1)!!
n! · 2n (|Q|2)n.

By the Banach algebra property (2.7) and the triangle inequality, we have

∥qx∥H1 ≤ ∥Q∥H1

∞∑
n=0

(2n − 1)!!
n! · 2n

∥∥∥|Q|2∥∥∥n
H1

=
∥Q∥H1√

1 −
∥∥∥|Q|2∥∥∥

H1

≤
∥Q∥H1√

1 −
∥∥∥Q∥∥∥2

H1

, (4.7)

where the equality in (4.7) holds under the condition ∥Q∥H1 < 1.
Next, we shall give an upper bound for ∥Q∥H1 . On one hand,

∥Q∥2L2 =

∫
R

|Q|2dx

=

∫
R

|qx|
2

1 + |qx|
2 dx

=

∫
R

|qx|
2

1 +
√

1 + |qx|
2

1 +
√

1 + |qx|
2

1 + |qx|
2 dx
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≤ 2
∫
R

|qx|
2

1 +
√

1 + |qx|
2
dx

= 2H2. (4.8)

On the other hand, noting that
|qx|

2
x = qxqxx + qxqxx,

and
(qxqxx − qxqxx)2 = (|qx|

2
x)

2 − 4|qx|
2|qxx|

2,

by a direct computation, we get

∥Qx∥
2
L2 =

∫
R

|Qx|
2dx

=

∫
R

∣∣∣∣∂x
( qx√

1 + |qx|
2

)∣∣∣∣2dx

=

∫
R

∣∣∣∣ qxx√
1 + |qx|

2
−

qx|qx|
2
x

2(
√

1 + |qx|
2)3

∣∣∣∣2dx

=

∫
R

[ |qxx|
2

1 + |qx|
2 −
|qx|

2
x(qxqxx + qxqxx)
2(1 + |qx|

2)2 +
(|qx|

2
x)

2|qx|
2

4(1 + |qx|
2)3

]
dx

=

∫
R

{ |qxx|
2

(1 + |qx|
2)3 −

(2 + |qx|
2)
[
(|qx|

2
x)

2 − 4|qx|
2|qxx|

2]
4(1 + |qx|

2)3

}
dx

=

∫
R

[ |qxx|
2

(1 + |qx|
2)3 −

(qxqxx − qxqxx)2

4(1 + |qx|
2)3 −

(qxqxx − qxqxx)2

4(1 + |qx|
2)2

]
dx.

Then,

∥Qx∥
2
L2 ≤

∫
R

[ |qxx|
2

(1 + |qx|
2)3 −

(qxqxx − qxqxx)2

4(1 + |qx|
2)3

]
·
√

1 + |qx|
2dx

−

∫
R

(qxqxx − qxqxx)2

4(1 + |qx|
2)2 dx

= H3 −
1
4

∫
R

(qxqxx − qxqxx)2

(1 + |qx|
2)

5
2

· (1 + |qx|
2)

1
2 dx

≤ H3 +H3 ·
∥∥∥√1 + |qx|

2
∥∥∥

L∞

≤ H3 +H3 · (1 + ∥qx∥L∞). (4.9)

By Lemma 4.2, we have

∥qx∥L∞ ≤ C∥q∥
1
4
L2∥qxx∥

3
4
L2

≤ C · H
1
8

1 ·

∥∥∥∥ qxx

(1 + |qx|
2)

5
4

· (1 + |qx|
2)

5
4

∥∥∥∥ 3
4

L2

≤ C · H
1
8

1 ·

∥∥∥∥ qxx

(1 + |qx|
2)

5
4

∥∥∥∥ 3
4

L2
·

∥∥∥∥(1 + |qx|
2)

5
4

∥∥∥∥ 3
4

L∞

Electronic Research Archive Volume 32, Issue 8, 4809–4827.



4825

≤ C · H
1
8

1 · H
3
8

3
(
1 + ∥qx∥

5
2
L∞
)
.

Note that the condition of Lemma 4.3 holds with the smallness assumption on H1 and H3. Hence,
applying Lemma 4.3 implies that ∥qx∥L∞ has an upper bound C(H1,H3), provided that H1(0) and
H3(0) are sufficiently small. So from (4.8)–(4.9), we see that the norm

∥Q∥H1 =

√
∥Q∥2

L2 + ∥Qx∥
2
L2

is bounded from above by a constant depending onH1(0),H2(0) andH3(0), that is,

∥Q∥H1 ≤
√

2H2 + 2H3 +H3 ·C(H1,H3) =: C(H1(0),H2(0),H3(0)). (4.10)

Combining (4.7) and (4.10), the following holds

∥qx∥H1 ≤
C(H1(0),H2(0),H3(0))√

1 − (C(H1(0),H2(0),H3(0)))2
,

which results in the t-independent bound of the norm ∥q∥H2

∥q∥H2 ≤
(
H1 +

(C(H1(0),H2(0),H3(0)))2

1 − (C(H1(0),H2(0),H3(0)))2

) 1
2
.

This bound allows us to apply bootstrap argument, and obtain global existence of solution to the Eq
(1.4). This completes the proof of Theorem 1.2. □
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