Research article Special Issues

A power generation accumulation-based adaptive chaotic differential evolution algorithm for wind turbine placement problems

  • Received: 13 February 2024 Revised: 23 May 2024 Accepted: 05 June 2024 Published: 26 July 2024
  • The focus on clean energy has significantly increased in recent years, emphasizing eco-friendly sources like solar, wind, hydropower, geothermal, and biomass energy. Among these, wind energy, utilizing the kinetic energy from the wind, is distinguished by its economic competitiveness and environmental benefits, offering scalability and minimal operational emissions. It requires strategic turbine placement within wind farms to maximize energy conversion efficiency, a complex task involving the analysis of wind patterns, turbine spacing, and technology. This task has traditionally been tackled by meta-heuristic algorithms, which face challenges in balancing local exploitation with global exploration and integrating problem-specific knowledge into the search mechanism. To address these challenges, an innovative power generation accumulation-based adaptive chaotic differential evolution algorithm (ACDE) is proposed, enhancing the conventional differential evolution approach with an adaptive chaotic local search and a wind turbine adjustment strategy based on tournament selection. This strategy aimed to prioritize energy-efficient turbine positions and improve population diversity, thereby overcoming the limitations of existing meta-heuristic algorithms. Comprehensive experiments with varying wind rose configurations demonstrated ACDE's superior performance in energy conversion efficiency, showcasing its potential in optimizing wind turbine placement for enhanced clean energy production. The wind farm layout optimization competition hosted by the Genetic and Evolutionary Computation Conference provided a comprehensive set of complex wind farm layouts. This dataset was utilized to further validate the performance of the algorithms. The results unequivocally demonstrate the superiority of ACDE when tackling complex optimization problems.

    Citation: Shi Wang, Sheng Li, Hang Yu. A power generation accumulation-based adaptive chaotic differential evolution algorithm for wind turbine placement problems[J]. Electronic Research Archive, 2024, 32(7): 4659-4683. doi: 10.3934/era.2024212

    Related Papers:

  • The focus on clean energy has significantly increased in recent years, emphasizing eco-friendly sources like solar, wind, hydropower, geothermal, and biomass energy. Among these, wind energy, utilizing the kinetic energy from the wind, is distinguished by its economic competitiveness and environmental benefits, offering scalability and minimal operational emissions. It requires strategic turbine placement within wind farms to maximize energy conversion efficiency, a complex task involving the analysis of wind patterns, turbine spacing, and technology. This task has traditionally been tackled by meta-heuristic algorithms, which face challenges in balancing local exploitation with global exploration and integrating problem-specific knowledge into the search mechanism. To address these challenges, an innovative power generation accumulation-based adaptive chaotic differential evolution algorithm (ACDE) is proposed, enhancing the conventional differential evolution approach with an adaptive chaotic local search and a wind turbine adjustment strategy based on tournament selection. This strategy aimed to prioritize energy-efficient turbine positions and improve population diversity, thereby overcoming the limitations of existing meta-heuristic algorithms. Comprehensive experiments with varying wind rose configurations demonstrated ACDE's superior performance in energy conversion efficiency, showcasing its potential in optimizing wind turbine placement for enhanced clean energy production. The wind farm layout optimization competition hosted by the Genetic and Evolutionary Computation Conference provided a comprehensive set of complex wind farm layouts. This dataset was utilized to further validate the performance of the algorithms. The results unequivocally demonstrate the superiority of ACDE when tackling complex optimization problems.



    加载中


    [1] B. Lin, Z. Li, Towards world's low carbon development: The role of clean energy, Appl. Energy, 307 (2022), 118160. https://doi.org/10.1016/j.apenergy.2021.118160 doi: 10.1016/j.apenergy.2021.118160
    [2] Z. Liu, X. He, Balancing-oriented hydropower operation makes the clean energy transition more affordable and simultaneously boosts water security, Nat. Water, 1 (2023), 778–789. https://doi.org/10.1038/s44221-023-00126-0 doi: 10.1038/s44221-023-00126-0
    [3] S. Carley, D. M. Konisky, The justice and equity implications of the clean energy transition, Nat. Energy, 5 (2020), 569–577. https://doi.org/10.1038/s41560-020-0641-6 doi: 10.1038/s41560-020-0641-6
    [4] Z. Yu, H. W. Kamran, A. Amin, B. Ahmed, S. Peng, Sustainable synergy via clean energy technologies and efficiency dynamics, Renewable Sustainable Energy Rev., 187 (2023), 113744. https://doi.org/10.1016/j.rser.2023.113744 doi: 10.1016/j.rser.2023.113744
    [5] H. T. Pao, Y. Y. Li, H. C. Fu, Clean energy, non-clean energy, and economic growth in the mist countries, Energy Policy, 67 (2014), 932–942. https://doi.org/10.1016/j.enpol.2013.12.039 doi: 10.1016/j.enpol.2013.12.039
    [6] S. Farid, S. Karim, M. A. Naeem, R. Nepal, T. Jamasb, Co-movement between dirty and clean energy: A time-frequency perspective, Energy Econ., 119 (2023), 106565. https://doi.org/10.1016/j.eneco.2023.106565 doi: 10.1016/j.eneco.2023.106565
    [7] Y. Wang, Y. Yu, S. Cao, X. Zhang, S. Gao, A review of applications of artificial intelligent algorithms in wind farms, Artif. Intell. Rev., 53 (2020), 3447–3500. https://doi.org/10.1007/s10462-019-09768-7 doi: 10.1007/s10462-019-09768-7
    [8] S. Roga, S. Bardhan, Y. Kumar, S. K. Dubey, Recent technology and challenges of wind energy generation: A review, Sustainable Energy Technol. Assess., 52 (2022), 102239. https://doi.org/10.1016/j.seta.2022.102239 doi: 10.1016/j.seta.2022.102239
    [9] P. Sadorsky, Wind energy for sustainable development: Driving factors and future outlook, J. Cleaner Prod., 289 (2021), 125779. https://doi.org/10.1016/j.jclepro.2020.125779 doi: 10.1016/j.jclepro.2020.125779
    [10] Y. F. Nassar, H. J. El-Khozondar, W. El-Osta, S. Mohammed, M. Elnaggar, M. Khaleel, et al., Carbon footprint and energy life cycle assessment of wind energy industry in libya, Energy Convers. Manage., 300 (2024), 117846. https://doi.org/10.1016/j.enconman.2023.117846 doi: 10.1016/j.enconman.2023.117846
    [11] G. Msigwa, J. O. Ighalo, P. S. Yap, Considerations on environmental, economic, and energy impacts of wind energy generation: Projections towards sustainability initiatives, Sci. Total Environ., 849 (2022), 157755. https://doi.org/10.1016/j.scitotenv.2022.157755 doi: 10.1016/j.scitotenv.2022.157755
    [12] M. S. Nazir, N. Ali, M. Bilal, H. M. Iqbal, Potential environmental impacts of wind energy development: A global perspective, Curr. Opin. Environ. Sci. Health, 13 (2020), 85–90. https://doi.org/10.1016/j.coesh.2020.01.002 doi: 10.1016/j.coesh.2020.01.002
    [13] C. Jung, D. Schindler, Efficiency and effectiveness of global onshore wind energy utilization, Energy Convers. Manage., 280 (2023), 116788. https://doi.org/10.1016/j.enconman.2023.116788 doi: 10.1016/j.enconman.2023.116788
    [14] M. Hannan, A. Q. Al-Shetwi, M. Mollik, P. J. Ker, M. Mannan, M. Mansor, et al., Wind energy conversions, controls, and applications: A review for sustainable technologies and directions, Sustainability, 15 (2023), 3986. https://doi.org/10.3390/su15053986 doi: 10.3390/su15053986
    [15] G. Gualtieri, Comparative analysis and improvement of grid-based wind farm layout optimization, Energy Convers. Manage., 208 (2020), 112593. https://doi.org/10.1016/j.enconman.2020.112593 doi: 10.1016/j.enconman.2020.112593
    [16] R. Nash, R. Nouri, A. Vasel-Be-Hagh, Wind turbine wake control strategies: A review and concept proposal, Energy Convers. Manage., 245 (2021), 114581. https://doi.org/10.1016/j.enconman.2021.114581 doi: 10.1016/j.enconman.2021.114581
    [17] S. R. Reddy, An efficient method for modeling terrain and complex terrain boundaries in constrained wind farm layout optimization, Renewable Energy, 165 (2021), 162–173. https://doi.org/10.1016/j.renene.2020.10.076 doi: 10.1016/j.renene.2020.10.076
    [18] P. Mittal, K. Mitra, In search of flexible and robust wind farm layouts considering wind state uncertainty, J. Cleaner Prod., 248 (2020), 119195. https://doi.org/10.1016/j.jclepro.2019.119195 doi: 10.1016/j.jclepro.2019.119195
    [19] H. Sun, H. Yang, Wind farm layout and hub height optimization with a novel wake model, Appl. Energy, 348 (2023), 121554. https://doi.org/10.1016/j.apenergy.2023.121554 doi: 10.1016/j.apenergy.2023.121554
    [20] F. P. Garcia Marquez, A. Peinado Gonzalo, A comprehensive review of artificial intelligence and wind energy, Arch. Comput. Methods Eng., 29 (2022), 2935–2958. https://doi.org/10.1007/s11831-021-09678-4 doi: 10.1007/s11831-021-09678-4
    [21] Q. Sui, Y. Yu, K. Wang, L. Zhong, Z. Lei, S. Gao, Best-worst individuals driven multiple-layered differential evolution, Inf. Sci., 655 (2024), 119889. https://doi.org/10.1016/j.ins.2023.119889 doi: 10.1016/j.ins.2023.119889
    [22] S. Gao, Y. Yu, Y. Wang, J. Wang, J. Cheng, M. Zhou, Chaotic local search-based differential evolution algorithms for optimization, IEEE Trans. Syst. Man Cybern.: Syst., 51 (2021), 3954–3967. https://doi.org/10.1109/TSMC.2019.2956121 doi: 10.1109/TSMC.2019.2956121
    [23] F. Azlan, J. Kurnia, B. Tan, M. Z. Ismadi, Review on optimisation methods of wind farm array under three classical wind condition problems, Renewable Sustainable Energy Rev., 135 (2021), 110047. https://doi.org/10.1016/j.rser.2020.110047 doi: 10.1016/j.rser.2020.110047
    [24] Y. Chen, H. Li, K. Jin, Q. Song, Wind farm layout optimization using genetic algorithm with different hub height wind turbines, Energy Convers. Manage., 70 (2013), 56–65. https://doi.org/10.1016/j.enconman.2013.02.007 doi: 10.1016/j.enconman.2013.02.007
    [25] X. Ju, F. Liu, Wind farm layout optimization using self-informed genetic algorithm with information guided exploitation, Appl. Energy, 248 (2019), 429–445. https://doi.org/10.1016/j.apenergy.2019.04.084 doi: 10.1016/j.apenergy.2019.04.084
    [26] X. Ju, F. Liu, L. Wang, W. J. Lee, Wind farm layout optimization based on support vector regression guided genetic algorithm with consideration of participation among landowners, Energy Convers. Manage., 196 (2019), 1267–1281. https://doi.org/10.1016/j.enconman.2019.06.082 doi: 10.1016/j.enconman.2019.06.082
    [27] Z. Lei, S. Gao, Y. Wang, Y. Yu, L. Guo, An adaptive replacement strategy-incorporated particle swarm optimizer for wind farm layout optimization, Energy Convers. Manage., 269 (2022), 116174. https://doi.org/10.1016/j.enconman.2022.116174 doi: 10.1016/j.enconman.2022.116174
    [28] Z. Lei, S. Gao, Z. Zhang, H. Yang, H. Li, A chaotic local search-based particle swarm optimizer for large-scale complex wind farm layout optimization, IEEE/CAA J. Autom. Sin., 10 (2023), 1168–1180. https://doi.org/10.1109/JAS.2023.123387 doi: 10.1109/JAS.2023.123387
    [29] Y. Yu, T. Zhang, Z. Lei, Y. Wang, H. Yang, S. Gao, A chaotic local search-based LSHADE with enhanced memory storage mechanism for wind farm layout optimization, Appl. Soft Comput., 141 (2023), 110306. https://doi.org/10.1016/j.asoc.2023.110306 doi: 10.1016/j.asoc.2023.110306
    [30] H. Yang, S. Gao, Z. Lei, J. Li, Y. Yu, Y. Wang, An improved spherical evolution with enhanced exploration capabilities to address wind farm layout optimization problem, Eng. Appl. Artif. Intell., 123 (2023), 106198. https://doi.org/10.1016/j.engappai.2023.106198 doi: 10.1016/j.engappai.2023.106198
    [31] H. Long, P. Li, W. Gu, A data-driven evolutionary algorithm for wind farm layout optimization, Energy, 208 (2020), 118310. https://doi.org/10.1016/j.energy.2020.118310 doi: 10.1016/j.energy.2020.118310
    [32] W. Li, E. Özcan, R. John, Multi-objective evolutionary algorithms and hyper-heuristics for wind farm layout optimisation, Renewable Energy, 105 (2017), 473–482. https://doi.org/10.1016/j.renene.2016.12.022 doi: 10.1016/j.renene.2016.12.022
    [33] F. Bai, X. Ju, S. Wang, W. Zhou, F. Liu, Wind farm layout optimization using adaptive evolutionary algorithm with monte carlo tree search reinforcement learning, Energy Convers. Manage., 252 (2022), 115047. https://doi.org/10.1016/j.enconman.2021.115047 doi: 10.1016/j.enconman.2021.115047
    [34] X. Yu, Y. Lu, Reinforcement learning-based multi-objective differential evolution for wind farm layout optimization, Energy, 284 (2023), 129300. https://doi.org/10.1016/j.energy.2023.129300 doi: 10.1016/j.energy.2023.129300
    [35] T. A. Qureshi, V. Warudkar, Wind farm layout optimization through optimal wind turbine placement using a hybrid particle swarm optimization and genetic algorithm, Environ. Sci. Pollut. Res., 30 (2023), 77436–77452. https://doi.org/10.1007/s11356-023-27849-7 doi: 10.1007/s11356-023-27849-7
    [36] B. Morales-Castañeda, D. Zaldivar, E. Cuevas, F. Fausto, A. Rodríguez, A better balance in metaheuristic algorithms: Does it exist?, Swarm Evol. Comput., 54 (2020), 100671. https://doi.org/10.1016/j.swevo.2020.100671 doi: 10.1016/j.swevo.2020.100671
    [37] Z. Cai, X. Yang, M. Zhou, Z. H. Zhan, S. Gao, Toward explicit control between exploration and exploitation in evolutionary algorithms: A case study of differential evolution, Inf. Sci., 649 (2023), 119656. https://doi.org/10.1016/j.ins.2023.119656 doi: 10.1016/j.ins.2023.119656
    [38] M. Qaraad, S. Amjad, N. K. Hussein, M. A. Farag, S. Mirjalili, M. A. Elhosseini, Quadratic interpolation and a new local search approach to improve particle swarm optimization: Solar photovoltaic parameter estimation, Expert Syst. Appl., 236 (2024), 121417. https://doi.org/10.1016/j.eswa.2023.121417 doi: 10.1016/j.eswa.2023.121417
    [39] J. Gao, Z. Wang, T. Jin, J. Cheng, Z. Lei, S. Gao, Information gain ratio-based subfeature grouping empowers particle swarm optimization for feature selection, Knowledge-Based Syst., 286 (2024), 111380. https://doi.org/10.1016/j.knosys.2024.111380 doi: 10.1016/j.knosys.2024.111380
    [40] Z. Zhang, Z. Lei, M. Omura, H. Hasegawa, S. Gao, Dendritic learning-incorporated vision transformer for image recognition, IEEE/CAA J. Autom. Sin., 11 (2024), 539–541. https://doi.org/10.1109/JAS.2023.123978 doi: 10.1109/JAS.2023.123978
    [41] Z. Wang, S. Gao, Z. Lei, M. Omura, An information-based elite-guided evolutionary algorithm for multi-objective feature selection, IEEE/CAA J. Autom. Sin., 11 (2024), 264–266. https://doi.org/10.1109/JAS.2023.123810 doi: 10.1109/JAS.2023.123810
    [42] M. Črepinšek, S. H. Liu, M. Mernik, Exploration and exploitation in evolutionary algorithms: A survey, ACM Comput. Surv. (CSUR), 45 (2013), 1–33. https://doi.org/10.1145/2480741.2480752 doi: 10.1145/2480741.2480752
    [43] P. Cai, Y. Zhang, T. Jin, Y. Todo, S. Gao, Self-adaptive forensic-based investigation algorithm with dynamic population for solving constraint optimization problems, Int. J. Comput. Intell. Syst., 17 (2024), 5. https://doi.org/10.1007/s44196-023-00396-2 doi: 10.1007/s44196-023-00396-2
    [44] N. Li, L. Ma, T. Xing, G. Yu, C. Wang, Y. Wen, et al., Automatic design of machine learning via evolutionary computation: A survey, Appl. Soft Comput., 143 (2023), 110412. https://doi.org/10.1016/j.asoc.2023.110412 doi: 10.1016/j.asoc.2023.110412
    [45] Z. Lei, S. Gao, Z. Zhang, M. Zhou, J. Cheng, MO4: A many-objective evolutionary algorithm for protein structure prediction, IEEE Trans. Evol. Comput., 26 (2022), 417–430. https://doi.org/10.1109/TEVC.2021.3095481 doi: 10.1109/TEVC.2021.3095481
    [46] Y. Cui, W. Hu, A. Rahmani, Multi-robot path planning using learning-based artificial bee colony algorithm, Eng. Appl. Artif. Intell., 129 (2024), 107579. https://doi.org/10.1016/j.engappai.2023.107579 doi: 10.1016/j.engappai.2023.107579
    [47] K. Hippalgaonkar, Q. Li, X. Wang, J. W. Fisher III, J. Kirkpatrick, T. Buonassisi, Knowledge-integrated machine learning for materials: lessons from gameplaying and robotics, Nat. Rev. Mater., 8 (2023), 241–260. https://doi.org/10.1038/s41578-022-00513-1 doi: 10.1038/s41578-022-00513-1
    [48] P. Manandhar, H. Rafiq, E. Rodriguez-Ubinas, Current status, challenges, and prospects of data-driven urban energy modeling: A review of machine learning methods, Energy Rep., 9 (2023), 2757–2776. https://doi.org/10.1016/j.egyr.2023.01.094 doi: 10.1016/j.egyr.2023.01.094
    [49] D. Cheng, J. Li, L. Liu, J. Liu, T. D. Le, Data-driven causal effect estimation based on graphical causal modelling: A survey, ACM Comput. Surv., 56 (2024), 1–37. https://doi.org/10.1145/3636423 doi: 10.1145/3636423
    [50] S. Gao, M. Zhou, Z. Wang, D. Sugiyama, J. Cheng, J. Wang, et al., Fully complex-valued dendritic neuron model, IEEE Trans. Neural Networks Learn. Syst., 34 (2023), 2105–2118. https://doi.org/10.1109/TNNLS.2021.3105901 doi: 10.1109/TNNLS.2021.3105901
    [51] Z. Qian, Y. F. Xie, S. Xie, MAR-GSA: Mixed attraction and repulsion based gravitational search algorithm, Inf. Sci., 662 (2024), 120250. https://doi.org/10.1016/j.ins.2024.120250 doi: 10.1016/j.ins.2024.120250
    [52] Z. Lei, S. Gao, H. Hasegawa, Z. Zhang, M. Zhou, K. Sedraoui, Fully complex-valued gated recurrent neural network for ultrasound imaging, IEEE Trans. Neural Networks Learn. Syst., 2023 (2023), 1–14. https://doi.org/10.1109/TNNLS.2023.3282231 doi: 10.1109/TNNLS.2023.3282231
    [53] S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi, J. Wang, Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction, IEEE Trans. Neural Networks Learn. Syst., 30 (2019), 601–604. https://doi.org/10.1109/TNNLS.2018.2846646 doi: 10.1109/TNNLS.2018.2846646
    [54] Y. Zhang, G. Chen, L. Cheng, Q. Wang, Q. Li, Methods to balance the exploration and exploitation in differential evolution from different scales: A survey, Neurocomputing, 561 (2023), 126899. https://doi.org/10.1016/j.neucom.2023.126899 doi: 10.1016/j.neucom.2023.126899
    [55] Y. Yu, S. Gao, M. Zhou, Y. Wang, Z. Lei, T. Zhang, et al., Scale-free network-based differential evolution to solve function optimization and parameter estimation of photovoltaic models, Swarm Evol. Comput., 74 (2022), 101142. https://doi.org/10.1016/j.swevo.2022.101142 doi: 10.1016/j.swevo.2022.101142
    [56] Y. Yu, Z. Lei, Y. Wang, T. Zhang, C. Peng, S. Gao, Improving dendritic neuron model with dynamic scale-free network-based differential evolution, IEEE/CAA J. Autom. Sin., 9 (2022), 99–110. https://doi.org/10.1109/JAS.2021.1004284 doi: 10.1109/JAS.2021.1004284
    [57] S. Gupta, S. Singh, R. Su, S. Gao, J. C. Bansal, Multiple elite individual guided piecewise search-based differential evolution, IEEE/CAA J. Autom. Sin., 10 (2023), 135–158. https://doi.org/10.1109/JAS.2023.123018 doi: 10.1109/JAS.2023.123018
    [58] R. Salgotra, A. H. Gandomi, A novel multi-hybrid differential evolution algorithm for optimization of frame structures, Sci. Rep., 14 (2024), 4877. https://doi.org/10.1038/s41598-024-54384-3 doi: 10.1038/s41598-024-54384-3
    [59] Y. Yu, K. Wang, T. Zhang, Y. Wang, C. Peng, S. Gao, A population diversity-controlled differential evolution for parameter estimation of solar photovoltaic models, Sustainable Energy Technol. Assess., 51 (2022), 101938. https://doi.org/10.1016/j.seta.2021.101938 doi: 10.1016/j.seta.2021.101938
    [60] A. V. Kononova, D. Vermetten, F. Caraffini, M. A. Mitran, D. Zaharie, The importance of being constrained: Dealing with infeasible solutions in differential evolution and beyond, Evol. Comput., 32 (2024), 3–48. https://doi.org/10.1162/evco_a_00333 doi: 10.1162/evco_a_00333
    [61] S. Gao, K. Wang, S. Tao, T. Jin, H. Dai, J. Cheng, A state-of-the-art differential evolution algorithm for parameter estimation of solar photovoltaic models, Energy Convers. Manage., 230 (2021), 113784. https://doi.org/10.1016/j.enconman.2020.113784 doi: 10.1016/j.enconman.2020.113784
    [62] S. Y. D. Sorkhabi, D. A. Romero, J. C. Beck, C. H. Amon, Constrained multi-objective wind farm layout optimization: Novel constraint handling approach based on constraint programming, Renewable Energy, 126 (2018), 341–353. https://doi.org/10.1016/j.renene.2018.03.053 doi: 10.1016/j.renene.2018.03.053
    [63] R. Shakoor, M. Y. Hassan, A. Raheem, Y. K. Wu, Wake effect modeling: A review of wind farm layout optimization using Jensen's model, Renewable Sustainable Energy Rev., 58 (2016), 1048–1059. https://doi.org/10.1016/j.rser.2015.12.229 doi: 10.1016/j.rser.2015.12.229
    [64] G. Mosetti, C. Poloni, B. Diviacco, Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm, J. Wind Eng. Ind. Aerodyn., 51 (1994), 105–116. https://doi.org/10.1016/0167-6105(94)90080-9 doi: 10.1016/0167-6105(94)90080-9
    [65] S. Grady, M. Hussaini, M. M. Abdullah, Placement of wind turbines using genetic algorithms, Renewable Energy, 30 (2005), 259–270. https://doi.org/10.1016/j.renene.2004.05.007 doi: 10.1016/j.renene.2004.05.007
    [66] A. M. Abdelsalam, M. El-Shorbagy, Optimization of wind turbines siting in a wind farm using genetic algorithm based local search, Renewable Energy, 123 (2018), 748–755. https://doi.org/10.1016/j.renene.2018.02.083 doi: 10.1016/j.renene.2018.02.083
    [67] T. van der Beek, D. Souravlias, J. T. van Essen, J. Pruyn, K. Aardal, Hybrid differential evolution algorithm for the resource constrained project scheduling problem with a flexible project structure and consumption and production of resources, Eur. J. Oper. Res., 313 (2024), 92–111. https://doi.org/10.1016/j.ejor.2023.07.043 doi: 10.1016/j.ejor.2023.07.043
    [68] Y. Liu, A. As'arry, M. K. Hassan, A. A. Hairuddin, H. Mohamad, Review of the grey wolf optimization algorithm: variants and applications, Neural Comput. Appl., 36 (2024), 2713–2735. https://doi.org/10.1007/s00521-023-09202-8 doi: 10.1007/s00521-023-09202-8
    [69] K. C. Okafor, B. Adebisi, A. O. Akande, K. Anoh, Agile gravitational search algorithm for cyber-physical path-loss modelling in 5G connected autonomous vehicular network, Veh. Commun., 45 (2024), 100685. https://doi.org/10.1016/j.vehcom.2023.100685 doi: 10.1016/j.vehcom.2023.100685
    [70] Y. Fu, M. Zhou, X. Guo, L. Qi, K. Gao, A. Albeshri, Multiobjective scheduling of energy-efficient stochastic hybrid open shop with brain storm optimization and simulation evaluation, IEEE Trans. Syst. Man Cybern.: Syst., 54 (2024), 4260–4272. https://doi.org/10.1109/TSMC.2024.3376292 doi: 10.1109/TSMC.2024.3376292
    [71] Z. Zhang, Q. Yu, H. Yang, J. Li, J. Cheng, S. Gao, Triple-layered chaotic differential evolution algorithm for layout optimization of offshore wave energy converters, Expert Syst. Appl., 239 (2024), 122439. https://doi.org/10.1016/j.eswa.2023.122439 doi: 10.1016/j.eswa.2023.122439
    [72] R. Zhong, E. Zhang, M. Munetomo, Evolutionary multi-mode slime mold optimization: a hyper-heuristic algorithm inspired by slime mold foraging behaviors, J. Supercomput., 80 (2024), 12186–12217. https://doi.org/10.1007/s11227-024-05909-0 doi: 10.1007/s11227-024-05909-0
    [73] J. Li, M. H. Dao, Q. T. Le, Data-driven modal parameterization for robust aerodynamic shape optimization of wind turbine blades, Renewable Energy, 224 (2024), 120115. https://doi.org/10.1016/j.renene.2024.120115 doi: 10.1016/j.renene.2024.120115
    [74] R. Atha, A. Rajan, S. Mallick, An enhanced Equilibrium Optimizer for solving complex optimization problems, Inf. Sci., 660 (2024), 120077. https://doi.org/10.1016/j.ins.2023.120077 doi: 10.1016/j.ins.2023.120077
    [75] Y. Cao, H. Zhang, W. Li, M. Zhou, Y. Zhang, W. A. Chaovalitwongse, Comprehensive learning particle swarm optimization algorithm with local search for multimodal functions, IEEE Trans. Evol. Comput., 23 (2019), 718–731. https://doi.org/10.1109/TEVC.2018.2885075 doi: 10.1109/TEVC.2018.2885075
    [76] Y. Wang, S. Gao, Y. Yu, Z. Cai, Z. Wang, A gravitational search algorithm with hierarchy and distributed framework, Knowledge-Based Syst., 218 (2021), 106877. https://doi.org/10.1016/j.knosys.2021.106877 doi: 10.1016/j.knosys.2021.106877
    [77] S. Karimkashi, A. A. Kishk, Invasive weed optimization and its features in electromagnetics, IEEE Trans. Antennas Propag., 58 (2010), 1269–1278. https://doi.org/10.1109/TAP.2010.2041163 doi: 10.1109/TAP.2010.2041163
    [78] D. Wilson, S. Rodrigues, C. Segura, I. Loshchilov, F. Hutter, G. L. Buenfil, et al., Evolutionary computation for wind farm layout optimization, Renewable Energy, 126 (2018), 681–691. https://doi.org/10.1016/j.renene.2018.03.052 doi: 10.1016/j.renene.2018.03.052
  • era-32-07-212-supplementary.pdf
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(571) PDF downloads(46) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog